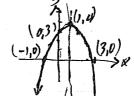
FINAL EXAM-WINTER 06 SHORT FORM EACH QUESTION IS WORTH 5 MARKS.

1. With the help of factoring simplify:

$$\frac{2x^{2} - 11x + 5}{2x^{2} + 9x - 5} \div \frac{x^{2} - 25}{x^{2} + 8x + 15} \times \frac{-x - 5}{x + 3}$$
Ans $\frac{x + 3}{x + 5}$


2. Solve the equation.

$$\frac{x-3}{x^2-1} + \frac{3}{x-1} = \frac{8}{x+1}$$
 And $X = 2$

- Find the inverse function $(f^{-1}(t))$, given; $f(t) = t^3 + 4$ (t > 0). 3. ANS fu(t)=3/E-4
- Solve for x using quadratic formula, given: $-11x^2 + 12x 1 = 0$. 4.

- Simplify: (i) $\frac{\left(-3x^{2}y^{3}\right)^{4}\left(x^{-2}\right)^{3}}{\left(x^{-3}y^{-2}\right)^{-4}}$ (ii) $\sqrt[3]{16x^{8} \cdot y^{5}}$

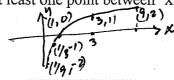
 i) Ans $2x^{2}y^{3}\sqrt{2x^{2}y^{2}}$

 Given: a) f(x) = 2x + 7, find $\frac{f(x+h) f(x)}{h}$. Ans 25.
- 6.
 - Rationalize the denominator and simplify, $\frac{3-\sqrt{2}}{5-\sqrt{8}}$
- Find the equation of a line in standard form passing through (0, -2) and 7. perpendicular to the line represented by 2x - 3y + 6 = 0. Graph this line indicating x & y intercepts. Ans 3x+2y=4
- g(x) = 2x 3. Find Given: $f(x) = 2x^2 - 1$ 8. (ii) $(g \circ f)(x)$ Ans $4x^2 - 5$ (f-g)(2)ANS = 6
- Graph the parabola represented by the equation $y = -x^2 + 2x + 3$. 9. Calculate and indicate on the graph, x and y intercepts, line of symmetry, and the co-ordinates of the vertex.

X. mit (-1,0) \$ (3,0) . y-mit (0,3) VERTER (1,4) limi of Som X=1

10.	Given $\sec \theta = \frac{-13}{12}$ and $\tan \theta > 0$. Locate this angle in its proper quadrant and then write all other trigonometric function values. Sing = $\frac{-5}{13}$ and $\frac{-5}{13}$ and $\frac{-5}{13}$ Use the calculator to find:		
	8mp = 3/13-12/ CSC 0 = -	13 5	
11.	Use the calculator to find:	-13 -5 /3	
	1) $\sec\left(\frac{13\pi}{9}\right) =$	5 2.6131	

2)
$$\cot^{-1}(5.7), \ \theta(DEG) = 9.9506^{b}$$


3)
$$\log_5 3125 = 5$$

4)
$$\log(x) = -3, x =$$
 .00

5)
$$\ln(e^{-13.5}) = -13.5$$

- 12. a) Locate these exact value angles in their proper quadrants, label the three sides of the right triangle and then find:
 - (i) sec(-120°) REFL 60° Sec-126=-2 in B2
 - (ii) $\tan\left(\frac{7\pi}{4}\right)$ Ref $l\sqrt{y}_4 = 4s^0$ in Ry $tan^2 = -1$
- 13. The angle of elevation to the top of the C.N. Tower from a point on the ground 200 m from the base of the pole is $66^{\circ}45'$. Find the height of the C.N. Tower.

 H=465.5 m
- 14. Verify the identity. $\csc \theta \cos \theta \cdot \cot \theta = \sin \theta$
- 15. Solve for x: $0^{\circ} \le x < 360^{\circ}$ $\sqrt{3} \tan x + 1 = 0.$
- Sketch the graph of $y = -2\cos\frac{1}{3}(x)$ for one period interval, calculate and indicate on the graph, (i) amplitude (ii) period (iii) quarter points coordinates $\frac{2\pi}{100} \frac{1}{100} \frac$
- 17. Sketch the graph of $y = \log_3(x)$. Indicate the x-intercept point and additional 3 points (at least one point between x = 0 to x = 1).

18. Solve for t:

$$\log_2(t+22) - \log_2(t+1) = \log_2(2)^3$$
. Any $t = 2$

- 19. Solve for t: $2(4)^{1.7t} = 262144$. Ans t = 5
- 20. The wheelchair ramp is in the form of a circular sector and is 2 m wide. If the inner radius is 10 m and the central angle is 50°15′, find the area of the ramp.

$$(A_{\text{sector}} = \frac{1}{2}\theta r^2)$$
 $A_{\text{MS}} A = 19.29 m^2$