FINAL EXAMINATION MATHEMATICS 914 APPLIED MATHEMATICS – BUSINESS ADMINISTRATION

December 12, 2005	2:00-5:00 P.M
STUDENT NAME:	
EXAMINERS: M. PERL, S. KENGATHARAM	

INSTRUCTIONS

- Non-programmable calculators are permitted.
- A formula sheet is provided.
- SHOW ALL WORK. No marks will be given for trial and error or guess and check.

Question #	Out of	Mark
1	8	
2	16	
3	4	
4	8	_
5	4	
6	8	
7	8	_
8	8	_
9	4	_
10	4	
11	4	_
12	4	
13	4	_
14	4	
15	6	
16	6	

1. Simplify:

i)
$$\frac{3x}{x^2 - 4} - \frac{1}{x^2 + 4x + 4}$$

ii)
$$\left(\frac{2x^4y^{10}}{3^{-1}x^{-2}y^5} \right)^{-2}$$

2. Solve the following equations.

i)
$$\frac{3x+1}{2} + \frac{5x-3}{6} = \frac{20x+3}{9}$$

ii)
$$\begin{cases} 2x + 3y &= 9 \\ 5x - 2y &= -25 \end{cases}$$

iii) $3^x = 1000$ (Answer to 3 decimal places.)

iv)
$$3x^2 - 7x = -2$$

3. If $f(x) = 3x^2 - 2x - 5$, find the difference quotient $\frac{f(x+h) - f(x)}{h}$.

4. If
$$f(x) = 2x^2 - x - 1$$
 and $g(x) = 2x + 1$

i) Find
$$\frac{f(x)}{g(x)}$$

[i.e. Divide $2x^2 - x - 1$ by $2x + 1$]

ii) Find
$$(fog)(1)$$
.

5. Consider the function $y = 2^{x+1}$. Complete the following table and sketch the graph clearly labeling the points in the table.

x =	-2	-1	0	1	2	3
<i>y</i> =						

6. i) Rewrite as the sum and/or difference of simple logarithms.

$$\log_3\left(\frac{x^2\sqrt{y}}{z^3}\right)$$

- ii) Graph $y = \log_4 x$. (Use table of values.)
- 7. Write the equation of the line passing through the point (-2, -7) that is perpendicular to the line given by the equation 3x + 5y = 11.
- 8. The demand function for an item is given by p = 300 0.1x where x represents the number of units.
 - i) Find the revenue function, R(x).
 - ii) At what price will the revenue function be maximized.
- 9. A company's supply function is given by $p = q^2 + q + 40$. The company's corresponding demand function is given by p = -3q + 100. Find the equilibrium price and quantity.
- 10. You invest \$5000 at simple interest for 10 years. If your investment is worth \$9000 find the rate of interest.
- 11. If you deposit \$3000 in a bank that pays interest at 7% compounded monthly. Find the accumulated value after 8 years.
- 12. How long will it take for \$12000 invested at 6.5% compounded continuously to accumulate to \$20000.
- 13. A company offered an annuity that pays 6.65% compounded quarterly if \$2500 is deposited into this annuity at the end of every 3 months. How much is in the account after 10 years?
- 14. An inheritance of \$450,000 will provide how much at the end of each year, for the next 20 years, if money is worth 7% compounded annually?
- 15. A company orders \$305,000 worth of merchandise and receives a series discount of 30/15/10.

Find: i) the net price.

- ii) the total discount.
- 16. An item sells for \$104. There is a markup rate of 30% based on selling price. Find: i) the cost price.
 - ii) the mark up.

FORMULAE

1) If
$$ax^2 + bx + c = 0$$
; $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

2)
$$A(or S) = P + Pr t = P(1+rt)$$

3)
$$A(or S) = P \left[1 + \frac{r}{m} \right]^{mt} = P \left(1 + i \right)^n$$

$$A(or S) = Pe^{rt}$$

5)
$$S = \frac{R\left[\left(1+i\right)^{n}-1\right]}{i}$$
or
$$S = \frac{R\left[\left(1+\frac{r}{m}\right)^{mt}-1\right]}{\frac{r}{m}}$$

$$6) A = R \left[1 - \left(1 + i \right)^{-n} \right] / i$$

or
$$A = R \left[1 - \left(1 + \frac{r}{m} \right)^{-mt} \right] / \frac{r}{m}$$

$$7) M = S - C$$

8)
$$r = \frac{M}{C}$$

9)
$$r = \frac{M}{S}$$

$$10) S = (1+r)C$$

$$11) C = (1-r)S$$

$$12) S = (1-r)R$$

13) Discount = list price
$$\times$$
 discount rate