Dawson College: Functions and Trigonometry: 201-009-50-C02: Fall 200	Dawson (College:	Functions and	Trigonometry:	201-009	-50-C02: Fall 200
--	----------	----------	---------------	---------------	---------	-------------------

Name:	
Student ID:	

Test 3

This test is graded out of 48 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1.

- a. (2 marks) What angle θ (0° $\leq \theta < 360^{\circ}$) is co-terminal to 1550°.
- b. (2 marks) Consider an angle θ in standard position. Then find the quadrant that its terminal edge lies in, if $\csc \theta < 0$ and $\cot \theta < 0$.
- c. (4 marks) Find the values of the other trigonometric functions, if $\cos \theta = \frac{-1}{2}$ and $\tan \theta < 0$.

Question 2.

- a. (4 marks) Sketch the graph of $f(x) = 2^x + 1$.
- b. (4 marks) Sketch the graph of $g(x) = \log_{\frac{1}{2}}(x+1)$
- c. (2 bonus marks) State the domain and range of f(x) and g(x).
- d. (1 bonus mark) Is f(x) injective, justify.

Question 3.

- a. (4 marks) Draw the two "special triangle" which help identify the special angles. Label the angles of the triangles and the lengths of the sides.
- b. (4 marks) Find the exact value of $\sec 945^{\circ}$
- c. (4 marks) Find the exact value of $\cos \frac{4\pi}{3}$

Question 4. Solve for *x*.

a. (4 marks)

$$2^{2x-1} = 3^{3-x}$$

b. (4 marks)

$$\log_2(x+1) + \log_2(x+4) = 2$$

Question 5.

- a. (4 marks) Solve the right triangle ABC ($C = 90^{\circ}$) given: a = 10, $B = 13^{\circ}$.
- b. (4 marks) Solve for $\theta,$ giving the exact solution, $0^\circ \leq \theta < 360^\circ$

$$\sqrt{3}\sec\theta + 2 = 0$$

