Dawson College: Functions and Trigonometry: 201-009-50-S01: Fall 2008	
Name: Student ID:	
$\mathbf{r}_{\mathbf{r}}$	

Test 2

This test is graded out of 50 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1.

- a. (4 marks) Find the distance and the midpoint of the line segment joining the points (2,3) and (4,3).
- b. (2 marks) Find the equation of the circle whose center is (2,3) if (4,3) is a point on the circle.

Question 2. (4 marks) Use the x and y intercepts to graph the linear function.

2x - 3y = 6

Question 3. Let $f(x) = \frac{1}{x+2}$ and $g(x) = \frac{x}{x^2+1}$.

- a. (4 marks) Determine $\frac{f(x+h)-f(x)}{h}$ and simplify.
- b. (1 marks) Determine the domain of f(x).
- c. (2 marks) Determine $(f \circ g)(x)$ and $(g \circ f)(x)$. Do not simplify
- d. (bonus 1 mark) Determine the range of f(x).

Question 4. Let $f(x) = 2x^2 - 8x + 6$.

- a. (2 marks) Determine the vertex of f(x) by completing the square.
- b. (1 mark) Determine the orientation of the parabola and state whether the vertex is a minimum or maximum.
- c. (1 mark) Determine the y-intercept.
- d. (1 mark) Determine the x-intercept(s).
- e. (1 mark) Sketch the graph of f(x).
- f. (2 marks) Determine the domain and range of f(x).

$$f(x) = \begin{cases} -x - 1 & \text{if } x \le -1\\ x^2 - 1 & \text{if } x > 1 \end{cases}$$

Question 6. (4 marks) Find the equation of the line that passes through the point (1,2) and is perpendicular to the line 2x + 5y = 10.

Question 7. Let $f(x) = 2^{x-1} + 2$.

- a. (4 marks) Find $f^{-1}(x)$.
- b. (4 marks) Sketch the graph of f(x), y = x and $f^{-1}(x)$ on the same cartesian plane.
- c. (1 mark) Determine the domain of $f^{-1}(x)$.

Question 8. Solve for *x*:

a.
$$(4 \text{ marks}) \log_6(x+3) = 1 - \log_6(x+4)$$

b.
$$(4 \text{ marks}) 27^{x-8} = \left(\frac{1}{3}\right)^{x+4}$$

Bonus.

- a. (2 marks) Prove that $f^{-1}(x) = \log_a x$ is the inverse of $f(x) = a^x$ by showing that $(f \circ f^{-1})(x) = x$ and $(f^{-1} \circ f)(x) = x$.
- b. (2 marks) If $f(x) = 2x^2 1$ and g(x) = x + 2 then find all values of x such that $(g \circ f)(x) [g(x)]^2 = 2$.