December 11, 2006
\qquad
EXAMINERS: L. FRAJBERG, V. OHANYAN

INSTRUCTIONS

- Non-programmable calculators are permitted.
- A formula sheet is provided.
- SHOW ALL WORK. No marks will be given for trial and error or guess and check.

Question \#	Out of	Mark
1	4	
2	4	
3	12	
4	3	
5	9	
6	8	
7	4	
8	4	
9	12	
10	4	
11	4	
12	4	
13	4	
14	8	
15	8	
16	8	

1. (4marks) Perform the operations and simplify
$\frac{x-2}{x^{2}-4 x+4} \div \frac{x^{2}+2 x}{x^{2}+4 x+4}$
2. (4marks) Find the equation of the line passing through the points $P_{1}(-2,5)$ and $P_{2}(4,17)$
3. (12marks) Solve the following equations (No marks for guess and check)
a) $\frac{x}{x+2}-\frac{2}{x+3}=\frac{2}{(x+2)(x+3)}$
b) $\left\{\begin{array}{l}3 x-5 y=22 \\ 2 x+3 y=2\end{array}\right.$

Continuation of problem 3
c) $\log _{4}(3 x-2)=2$
d) $e^{4 x-2}=793 \quad$ (Answer to 5 decimal places)
4. (3marks) Express the following as a single logarithm
$\frac{1}{2} \log (3 x+4)-2 \log (4 x-2)+3 \log (2 x+3)$
5. (9marks) If $f(x)=2 x^{2}-3 x+4$ and $g(x)=x+3$
a) Find $2 f(-1)-3 g(2)$

Continuation of problem 5
b) Find $f(x+3)$ (simplify the answer)
c) Find the Newton's quotient $\frac{f(x+h)-f(x)}{h}$
6. (8marks) An item has a linear depreciation function. After 10 years its value is $\$ 6000$ and after 25 years its value is $\$ 1500$.
a) Find the depreciation function which relates its value \boldsymbol{y} to the number of years $\underline{\boldsymbol{x}}$ which have elapsed.
b) After 20 years how much of its original value is lost?
7. (4marks) If the demand function for an item is given by $p+2 q=100$ and the corresponding supply function is given by $3 p-4 q=250$, where p is the price and q is the quantity, find the equilibrium price and quantity.
8. (4marks) An item sells for $\$ 150$ per unit. The cost of producing x units is given by the equation $C(x)=x^{2}+60 x+800$. Find the levels of sales at which the firm selling the item is breaking even.
9. (12marks) The price of selling of x items is given by $p=150-3 x$
a) Find the revenue function $R(x)$
b) Find the level of sales which maximizes the revenue.
c) What is the maximum revenue?
10. (4marks) On September $10^{\text {th }}$ of 2006 you invested $\$ 3211$ at 6% simple annual interest rate. If after 18 months you need money and withdraw $\$ 500$. How long will it take for you, starting from September $10^{\text {th }}$ of 2006 to have $\$ 4350$ in your account?
11. (4marks) How long does it take for $\$ 15000$ invested at 7% compounded continuously to grow to 26260.09?
12. (4marks) You invest $\$ 20000$ compounded quarterly at 4% per year for a certain number of years. When you retrieve your investment its final value is 29777.27 dollars. For how many years did you invest your money?
13. (4marks) A town establishes a sinking fund to pay off a debt of $\$ 200000$ in 10 years by making equal quarterly deposits. If the investment pays 4% compounded quarterly, what must be the size of the deposits? (Answer to the nearest cent).
14. (8marks) You wish to buy a house costing $\$ 400000$ by making a down payment of $\$ 50000$ and taking out a loan for the balance. You pay off the loan by making monthly payments for the next 15 years. The interest rate on you loan is 12% per year.
a) What will be the size of your payments?
b) How much interest did you pay? (Answer to the nearest cent)
15. (8marks) A gymnasium orders $\$ 75000$ worth of equipment and receives a series discount of 25/20/10.
a) Find the net price.
b) Find the single discount rate which is equivalent to the series discount.
16. (8marks) An item is on sale for $\$ 340$. This is a 15% mark down of the regular price. a) Find the regular price
b) Find the mark down

1. $(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
$(a-b)(a+b)=a^{2}-b^{2}$
2. $y-y_{1}=m\left(x-x_{1}\right)$
3. $x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
4. $S=P+\operatorname{Pr} t=P(1+r t)$
5. $S=P(1+i)^{n}=P\left(1+\frac{r}{m}\right)^{m t}$
6. $S=P e^{r t}$
7. $A P Y=\left(1+\frac{r}{m}\right)^{m}-1$
8. $A P Y=e^{r}-1$
9. $S=R \frac{(1+i)^{n}-1}{i}$
10. $\quad A_{n}=R \frac{1-(1+i)^{-n}}{i}$
11. $\log _{a}(x y)=\log _{a} x+\log _{a} y$

$$
\log _{a}(x / y)=\log _{a} x-\log _{a} y
$$

$\log _{a} x^{n}=n \log _{a} x$
$\log _{a} x=y \Rightarrow x=a^{y}$
12. Net price $=($ list price $) \times($ the complement of the discount rate $)$
13. Net price $=($ list price $)-($ discount $)$
14. The markup equations
a) $\quad M=S-C, \quad M=r C, \quad S=(1+r) C$
b) $\quad M=S-C, \quad M=r S, \quad S=(1-r) C$
15. The markdown equations

$$
M=R-S, \quad M=r R, \quad S=(1-r) R
$$

