Dawson	College:	Calculus	II · 2	01-NY	B-05-C	2: Fall	2009
Dungon	Conces.	Cuicuius	11. 2	OI 111.	\mathbf{p}	∠. I un	2007

Name:	
Student ID:	

Quiz 9

This quiz is graded out of 15 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (5 marks) §8.8 #29

Determine if the improper integral diverges or converges. Evaluate if the integral converges.

$$\int_0^\infty \frac{1}{e^x + e^{-x}} \, dx$$

Question 2. (5 marks) §8.8 #35

Determine if the improper integral diverges or converges. Evaluate if the integral converges.

$$\int_0^8 \frac{1}{\sqrt[3]{8-x}} \, dx$$

Question 3. (5 marks) $\S 9.1 \# 64$ Determine the convergence or divergence of the sequence with the given n^{th} term. If the sequence converges, find its limit.

$$a_n = n \sin \frac{1}{n}$$