Dawson C	College:	Linear	Algebra:	201-105	-DW-	S05:	Fall	2009
-----------------	----------	--------	----------	---------	------	------	------	------

Name:	·
Student ID:	

Test 1

This test is graded out of 49 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (10 marks) Solve the following system by Gauss-Jordan elimination:

$$3x_1 + 2x_2 + 2x_3 = 3$$

 $4x_1 + 3x_2 + 3x_3 + x_4 = 5$
 $2x_1 + 1x_2 + 1x_3 = 2$
 $7x_1 + 5x_2 + 5x_3 + x_4 = 8$

Question 2. Consider the matrices:

$$A = \begin{bmatrix} -1 & 2 & 5 \\ 2 & 3 & -6 \\ 1 & 0 & -2 \end{bmatrix}, B = \begin{bmatrix} 3 & 2 & -1 \\ 0 & -4 & 1 \end{bmatrix} C = \begin{bmatrix} 2 & -1 \\ -3 & 4 \\ 0 & -1 \end{bmatrix} D = \begin{bmatrix} 1 & 0 \\ -2 & -2 \end{bmatrix}$$

a. (2 marks) Compute the following, if possible.

$$C-D$$

b. (4 marks) Compute the following, if possible.

$$CB - 2A$$

c. (4 marks) Compute the following, if possible.

$$tr(C^TB^T)$$

d. (4 marks) Find E, if possible.

$$(I - E^T)^{-1} = D$$

Question 3. (5 marks) Given the following augmented matrix in row-echelon form, solve the system using back substitution.

$$\begin{bmatrix} 1 & 4 & 3 & 1 & \sqrt{3} \\ 0 & 1 & -2 & 3 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

Question 4. (3 marks) Show that if A is invertible and AB = AC, then B = C.

Question 5. (8 marks) Solve the following system by inverting the coefficient matrix.

Question 6. Consider the matrices

$$A = \begin{bmatrix} 2 & 3 \\ 3 & -5 \end{bmatrix}, B = \begin{bmatrix} 3 & -5 \\ 2 & 3 \end{bmatrix}, C = \begin{bmatrix} 3 & -5 \\ 5 & -2 \end{bmatrix}$$

Find the elementary matrices E_1 , E_2 and E_3 (if possible) such that

- a. $(2 \text{ marks}) E_1 A = B$
- b. $(2 \text{ marks}) E_2 B = C$
- c. $(2 \text{ marks}) E_3 A = C$

Question 7. (3 marks) Find A^{-1} if $A^2 + 3A - I = 0$.

Bonus Question. (3 marks) Consider

$$A = \begin{bmatrix} a & 0 \\ b & c \end{bmatrix}$$

where $a,b,c \neq 0$ and find A^{-1} as a product of elementary matrices.