DAWSON COLLEGE

Mathematics Department

Final Examination Calculus I 201-NYA-05

(Commerce and International Business Studies)

December 18th, 2008

(5 Marks) Find the value of the constant k so that function f(x) will be continuous at x = 2. <u>Verify</u> the conditions of continuity for f(x) at x = 2.

$$f(x) = \begin{cases} 5x^3 - 40 & \text{if } x > 2\\ k + 6 & \text{if } x = 2\\ x - 2 & \text{if } x < 2 \end{cases}$$

2. (2+3+3 Marks) Evaluate the following limits, if possible

a)
$$\lim_{x \to 2} \frac{2x^2 + 7x - 18}{x^2 - 4x}$$

b)
$$\lim_{x\to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$$

+3+3 Marks) Evaluate the following limits, if possible

a)
$$\lim_{x\to 2} \frac{2x^2 + 7x - 18}{x^2 - 4x}$$
 b) $\lim_{x\to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$ c) $\lim_{x\to 3} \frac{4x - 12}{\frac{1}{x+1} - \frac{1}{4}}$

3. (4 Marks) Use <u>the limit definition of the derivative</u> to find $\frac{dy}{dx}$ if $y = x^2 + 3x + 1$.

4. (4 Marks) Find an equation for the line tangent to $y = \frac{1-x}{1+x}$ at x = 2.

5. (5 Marks) Find the x-value(s) at which the graph of the function $y = \frac{(3x+1)^2}{(7x+2)^3}$ has a horizontal tangent line.

6. (16 Marks) Differentiate the following functions (make only obvious simplifications) a) $y = \arctan(4x^3)$ b) $y = \frac{\tan(5x)}{(x^2 + 7x)^3}$ c) $y = e^{5x^2} \cdot \cos(2x)$ d) $y = \sin^2(3x)$

a)
$$y = \arctan(4x^3)$$

b)
$$y = \frac{\tan(5x)}{(x^2 + 7x)^3}$$

$$c) \quad y = e^{5x^2} \cdot \cos(2x)$$

$$d) \quad y = \sin^2(3x)$$

7. (5 Marks) Use implicit differentiation to find $\frac{dy}{dx}$ if $x^2 + 2xy + y^3 = 5x$.

8. (5 Marks) Find $\frac{d^2y}{dx^2}$ and simplify your answer if $y = \ln(1+x^4)$.

9. (5 Marks) Use logarithmic differentiation method to find the derivative of $y = \frac{(x^2 + 1)^{\frac{1}{4}} \cdot \sqrt{\sin x}}{e^{2x}(x^2 + 3x + 1)^5}$.

10. (6 Marks) The temperature of a cup of coffee at time t (in minutes) is $T(t) = 70 + C \cdot e^{-0.06t}$ Initially (i.e. at time t = 0) the temperature of the coffee was $200^{\circ} F$.

a) Find the constant C.

b) When will the temperature of the coffee be $150^{\circ}F$? (Round off to two decimal places.)

c) How fast is the coffee temperature decreasing at t = 4 minutes? (Round off to two decimal places.)

- 11. (6 Marks) The demand function for a certain product is $x = f(p) = \sqrt{450 5p}$ $(0 \le p \le 90)$.
 - a) Find the elasticity of demand. (Recall that the elasticity of demand can be expressed in the form $E = -\frac{p \cdot f'(p)}{f(p)}$ or $E = -\frac{p}{x} \left(\frac{dx}{dp} \right)$)
 - b) Is the demand elastic or inelastic when (i) p = 40 (ii) p = 70?
 - c) When is the demand unitary? (Determine the price.)
- 12. (6 Marks) The demand function for a certain product is $p = \frac{50}{0.01x^2 + 1}$ (0 \le x \le 20) where p is in dollars and x is measured in units. Find
 - a) Revenue function R(x).
 - b) Marginal revenue function R'(x).
 - c) R'(2) and interpret your result.
- 13. (6 Marks) The total cost for a company to produce x units of a good is given by $C(x) = 0.02x^2 + 30x + 72$
 - a) Find the average cost function.
 - b) Find the level of production that minimizes the average cost.
- 14. (6 Marks) A book designer requires the pages of a book to have 2 cm margins at the top and bottom and 1 cm margins on the sides. Furthermore, page area is required to be $200 cm^2$. Find the dimensions of the page that will result in the maximum printed area on the page.
- 15. (8 Marks) Given the function $f(x) = x^3 9x^2 + 15x 5$.

Find (if any)

- a) the y-intercept
- b) the intervals where f(x) is increasing and where it is decreasing
- c) all relative (local) maxima and relative (local) minima.
- d) the intervals where f(x) is concave upward and where it is concave downward
- e) all points of inflection

Using this information sketch the graph of f(x). Clearly label all the points found

16. (5 Marks) Find the indefinite integral $\int \left(\frac{2}{x^4} - 5\sec^2 x + \frac{7}{x}\right) dx$

ANSWERS

1.
$$k = -6$$

2. a)
$$-1$$
 b) $\frac{1}{2\sqrt{2}}$ c) -64

3.
$$2x+3$$

4.
$$y = \frac{-2}{9}x + \frac{1}{9}$$
 or $9y + 2x - 1 = 0$

5.
$$x = -\frac{1}{3}, x = -\frac{3}{7}$$

6. a)
$$\frac{12x^2}{1+16x^6}$$

6. a)
$$\frac{12x^2}{1+16x^6}$$
 b) $\frac{5\sec^2(5x)\cdot(x^2+7x)-3\tan(5x)(2x+7)}{(x^2+7x)^4}$

c)
$$2e^{5x^2} \cdot \left[5x \cdot \cos(2x) - \sin(2x)\right]$$

d)
$$6\sin(3x)\cos(3x)$$

7.
$$y' = \frac{5 - 2x - 2y}{2x + 3y^2}$$

8.
$$\frac{d^2y}{dx^2} = \frac{4x^2(3-x^4)}{(1+x^4)^2}$$

9.
$$y' = \frac{\left(x^2 + 1\right)^{\frac{1}{4}} \cdot \sqrt{\sin x}}{e^{2x} \left(x^2 + 3x + 1\right)^5} \cdot \left[\frac{x}{2\left(x^2 + 1\right)} + \frac{1}{2}\cot x - 2 - \frac{5(2x + 3)}{x^2 + 3x + 1}\right]$$

10. a)
$$C = 130$$
 b) $t = -\frac{1}{0.06} \ln \left(\frac{8}{13} \right) \approx 8.09 \, \text{min}$ c) $\frac{dT}{dt}\Big|_{t=4} = -7.8e^{-0.24} \approx -6.14 \, {}^{\circ}F / \text{min}$

c)
$$\frac{dT}{dt}\Big|_{t=4} = -7.8e^{-0.24} \approx -6.14 \, {}^{\circ}F / \min$$

11. a)
$$E(p) = \frac{p}{2(90-p)}$$

b) (i) inelastic (ii) elastic

12. a)
$$R(x) = \frac{50x}{0.01x^2 + 1}$$

b)
$$R'(x) = \frac{50 - 0.5x^2}{(0.01x^2 + 1)^2}$$

12. a) $R(x) = \frac{50x}{0.01x^2 + 1}$ b) $R'(x) = \frac{50 - 0.5x^2}{(0.01x^2 + 1)^2}$ c) $R'(2) = \frac{48}{1.04^2} \approx 44.38$

The sale of the 3rd unit will bring a revenue of approximately \$44.38

13. a)
$$\overline{C}(x) = 0.02x + 30 + \frac{72}{x}$$
 b) 60 units.

14. 10 cm by 20 cm.

15.

b)
$$f(x)$$
 is increasing on $(-\infty,1) \cup (5,\infty)$ and

f(x) is decreasing on (1,5)

- d) f(x) is concave upward on $(3, \infty)$ and it is concave downward on $(-\infty,3)$
- e) (3,-14) is an inflection point

16.
$$\frac{2x^{-3}}{-3} - 5\tan x + 7\ln|x| + c$$

