Name: Y. Lamontagne

Quiz 11

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (5 marks) A hemispherical tank is filled with liquid chocolate which has a density of $\rho = 1200 \frac{kg}{m^3}$. If the tank is 2m across the top (diameter), set up the integral that represent the work performed to empty half the tank of chocolate through a pipe that extends 5m above the top edge? $\left(g = 9.8 \frac{m}{c^2}\right)$

Volume of slice:
$$\Delta V = \pi r^2 \Delta y$$

$$= \pi x^2 \Delta y$$

$$= \pi \left[1 - (y-1)^2\right] \Delta y$$

$$\times^2 + (y-1)^2 = 1$$

$$\times^2 = 1 - (y-1)^2$$

mass of slice:
$$\Delta m = g \Delta V$$

$$= 1200 \pi \left[[-(y-1)^2] \Delta y \right]$$

force of slice:

$$\Delta F = \Delta m g$$
= 1200 (9.8) $\pi \left[1 - (y-1)^2 \right] \Delta y$
= 11760 $\pi \left[1 - (y-1)^2 \right] \Delta y$

work:

$$W = \int_{y_2}^{y_2} 11760\pi \left[1 - (y-1)^2\right] (6-y) dy$$

Question 2. $\S 8.1 \# 5$ (2 marks) Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues.

$$\left\{1, -\frac{2}{3}, \frac{4}{9}, -\frac{8}{27}, \dots\right\}$$

$$a_{1} = 1$$

$$a_{2} = -\frac{1}{3}$$

$$a_{3} = \frac{4}{9}$$

$$a_{4} = -\frac{8}{27}$$

$$a_{7} = \frac{1}{2}$$

$$a_{1} = \frac{8}{27}$$

Question 3. §8.1 #19 (3 marks) Determine whether the sequence converges or diverges. If it converges, find the limit.

$$\begin{cases} n^{2}e^{-n} \end{cases} \qquad a_{n} = n^{2}e^{-n}$$
Let $f(x) = x^{2}e^{-x}$
then $\lim_{x \to \infty} x^{2}e^{-x}$

$$= \lim_{x \to \infty} \frac{x^{2}}{e^{x}}$$

$$= \lim_{x \to \infty} \frac{2x}{e^{x}}$$
by H

$$= \lim_{x \to \infty} \frac{2}{e^{x}}$$

$$= \lim_{x \to \infty} \frac{2}{e^{x}}$$
by H

converges to O.