SOLUTIONS

In-Class Assignment #8

Applied Mathematics for Electronics Engineering Technology 201-943-DW

November 9th 2012

In exercises 1 to 6, convert the degree measurement of the angle to radian measure to the nearest hundredth of a radian.

1) 31°

2) 147°

3) 293°

4) 630°

5) 434°

6) 169°

O.54 2.57 5.11 11.00 7.57 2.95 In exercises 7 to 12, convert the degree measurement of the angle to an exact radian measure.

7) 35°

8) 160°

9) 315°

10) 410°

11) 620°

12) 585°

In exercises 13 to 18, convert the radian measure to a measure in degrees to the nearest hundredth of a degree.

13) 1.2

14) 0.23

15) 0.6 16) 7.23

68.75° 13.18° 34.38° 414.25° 286.48° 744.85° In exercises 19 to 24, convert the radian measure to the exact degree measurement.

19) $\pi/3$ 20) $\pi/7$ 21) $(5\pi)/8$ 22) $(13\pi)/3$ 24) 6π 60° 180/7° 112.5° 780° 1080° In exercises 25 to 27, find the measure of the central angle in both degrees and radians with the given radius and arc length. 0 = 5/F

25) r = 2cm, s = 8cm 26) r = 3m, s = 2m 27) r = 3.2mm, s = 5.4mm $\Theta = 4$, 229.18° $\Theta = \frac{2}{3}$, 38.20° $\Theta = 1.6875$, 96.69° In exercises 28 to 30, find the length of the arc length with the given central angle and radius. S=O· (REMEMBER & is in radians!)

28) r = 2cm, $\theta = \pi/3$ 29) r = 2.2cm, $\theta = (7\pi)/2$ 30) r = 14cm, $\theta = 3\pi$ $S = 2\pi/3 cm$ S = 7.7 T C M S = 42 T C

S = 42TT CM

BONUS QUESTIONS

The minute hand on a huge public clock measures 2.2 metres from the tip to the axle.

- a. Through what angle does the minute hand pass between 8:07am and 8:43am?
- b. What distance does the tip of the minute hand travel during this period?

a. Thour = 360°

36 MINUTED?

 $\Theta = 216^{\circ}$

$$\Theta = \frac{S}{\Gamma} \qquad S = \Theta \cdot \Gamma$$

$$= 6T_{5} \cdot (2.2)$$

$$= 8.29 \text{ m}$$