ALGEBRA MODULES (Revised Aug. 2000)

ALGEBRA MODULE ONE POLYNOMIALS, DIVISION AND FACTORIZATION

LONG DIVISION OF POLYNOMIALS

Example 1: Divide the polynomial $f(x) = x^3 + 4x^2 - x - 4$ by x - 1 and use the result to factor f(x) completely.

$$\frac{x^{2} + 5x + 4}{x - 1)x^{3} + 4x^{2} - x - 4}$$

$$\frac{x^{3} - x^{2}}{5x^{2} - x}$$
Multiply: $x^{2}(x - 1)$

$$\frac{5x^{2} - 5x}{4x - 4}$$
Subtract
$$\frac{4x - 4}{0}$$
Multiply $4(x - 1)$
Subtract

We see that $x^3 + 4x^2 - x - 4 = (x - 1)(x^2 + 5x + 4)$ and by factoring the quadratic, we have f(x) = (x - 1)(x + 1)(x + 4).

Example 2: Divide $x^3 - 8$ by x - 2.

Since there are powers of x missing in $x^3 - 8$, we can choose to write those powers with zero coefficients or to leave spaces.

$$\begin{array}{r} x^{2} + 2x + 4 \\ x - 2 \overline{\smash)x^{3} + 0x^{2} + 0x - 8} \\ \underline{x^{3} - 2x^{2}} \\ \underline{2x^{2}} \\ \underline{2x^{2} - 4x} \\ \underline{4x - 8} \\ \underline{4x - 8} \\ 0 \end{array}$$

Therefore $x^3 - 8 = (x - 2)(x^2 + 2x + 4)$

THE REMAINDER THEOREM

Suppose that p(x) is a polynomial and r is a real number. If p(x) is divided by x-r, the remainder is p(r).

From the two examples above, we can see that if x-r is a factor of a polynomial then the remainder after division is zero. The Remainder Theorem can be used as a test to see whether an expression is a factor of a polynomial.

Example: Use long division to find the remainder when $p(x) = 2x^3 - 2x^2 + 3x - 5$ is divided by x - 2.

$$2x^{2} + 2x + 7$$

$$x - 2) 2x^{3} - 2x^{2} + 3x - 5$$

$$2x^{3} - 4x^{2}$$

$$2x^{2} + 3x$$

$$2x^{2} - 4x$$

$$7x - 5$$

$$7x - 14$$

The remainder after division is 9. Note that $p(2) = 2(2)^3 - 2(2)^2 + 3(2) - 5 = 16 - 8 + 6 - 5 = 9$. Obviously x - 2 is not a factor of p(x). The result may be written as a polynomial plus a fraction:

$$\frac{2x^3 - 2x^2 + 3x - 5}{x - 2} = 2x^2 + 2x + 7 + \frac{9}{x - 2}.$$

The following theorem guarantees the condition under which an expression is a factor of a polynomial:

THE FACTOR THEOREM

If p(x) is a polynomial and r a real number, then p(x) has x-r as a factor if and only if p(r) = 0.

Example: Show that x-3 is a factor of $p(x) = x^3 - 2x^2 - 2x - 3$.

 $p(3) = 3^3 - 2(3)^2 - 2(3) - 3 = 27 - 18 - 6 - 3 = 0$. Therefore by the Factor Theorem x - 3 is a factor of p(x).

THE RATIONAL ZEROS TEST

If the polynomial $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ has integer coefficients, then every rational zero, r, of p(x) has the form r = p/q where p and q have no common factors other than 1 and p is a factor of the constant term, a_0 , while q is a factor of the leading coefficient, a_n .

This theorem is somewhat easier to apply when $a_n = 1$.

In the following two xamples find at least one rational zero of the polynomial and use the Remainder Theorem and long division to factor the polynomial completely.

Example 1: $p(x) = x^4 - x^3 + x^2 - 3x - 6$.

Possible zeros = ± 1 . ± 2 , ± 3 , ± 6 . When we check we find that the only two that give a remainder of zero are x = -1 and x = 2. If we divide p(x) by x + 1 we find the quotient is $x^3 - 2x^2 + 3x - 6$. If we divide this quotient by x - 2, we obtain a quotient of $x^2 + 3$. So $p(x) = (x + 1)(x - 2)(x^2 + 3)$.

Example 2: $p(x) = x^3 - 3x^2 - x + 3$.

The possible rational zeros are the factors of 3 since the leading coefficient is 1. Possible zeros $= \pm 1, \pm 3$. It is easy to verify that p(1) = 0, so x - 1 is a factor. Using long division:

$$x^{2}-2x-3$$

$$x-1)x^{3}-3x^{2}-x+3$$

$$x^{3}-x^{2}$$

$$-2x^{2}-x$$

$$-2x^{2}+2x$$

$$-3x+3$$

$$-3x+3$$

$$0$$

$$p(x) = (x-1)(x-3)(x+1)$$

SPECIAL FACTORIZATIONS

DIFFERENCE OF SQUARES: $a^2 - b^2 = (a - b)(a + b)$

PERFECT SQUARES: $(a - b)^2 = a^2 - 2ab + b^2$ $(a + b)^2 = a^2 + 2ab + b^2$

DIFFERENCE OF CUBES: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

SUM OF CUBES: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

CUBE OF A SUM: $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

CUBE OF A DIFFERENCE: $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

SECOND DEGREE POLYNOMIALS: Polynomials of the form $x^2 + (a+b)x + ab$ can be factored into (x+a)(x+b); i.e., $x^2 + (a+b)x + ab = (x+a)(x+b)$

Example 1: $x^2 - 3x - 10 = (x - 5)(x + 2)$ Here a = -5 b = 2 Note that a + b = -5 + 2 = -3 and ab = (-5)(2) = -10.

If the coefficient of x^2 is \underline{NOT} 1 (one) we can factor the quadratic, in simple cases by TRIAL AND ERROR. Alternately we can use the GROUPING AND FACTORING method.

Example 2A: (TRIAL and ERROR).

FACTOR $3x^2 - 5x - 2$.

Solution: We need four terms a, b, c, d such that

$$3x^2 - 5x - 2 = (a + b)(c + d)$$
 Thus $ac = 3x^2$, $bd = -2$.

i) Try a = 3x, c = x, b = -1, d = 2. Thus (3x-1)(x+2) which results in $3x^2 + 5x - 2$ and is INCORRECT.

ii) Try a = 3x c = x b = 1 d = -2. Thus (3x+1)(x-2) which results in $3x^2 - 5x - 2$ which is CORRECT. Thus $3x^2 - 5x - 2 = (3x+1)(x-2)$. Example 2B:

(GROUPING and FACTORING)

$$3x^2 - 5x - 2$$

$$=3x^2-6x+x-2$$

(SPLIT the middle term.)

$$=3x(x-2)+1(x-2)$$

(Grouping and Factoring)

$$=(3x+1)(x-2)$$

FOURTH DEGREE POLYNOMIALS: Fourth degree polynomials in the form $ax^4 + bx^2 + c$ may be factored as quadratics.

Example 3:
$$x^4 - 5x^2 + 4 = (x^2 - 1)(x^2 - 4) = (x - 1)(x + 1)(x - 2)(x + 2)$$

Example 4:
$$x^4 + 6x^2 - 7 = (x^2 - 1)(x^2 + 7) = (x - 1)(x + 1)(x^2 + 7)$$

PROBLEMS

In the following problems, one of the zeros of the polynomial is given. Use the Factor A. Theorem and long division to factor the polynomial completely.

1)
$$x^3 - 4x^2 - x + 4$$
; $r = 1$

4)
$$x^4 - 9x^3 + 6x^2 + 16x$$
; $r = -1$

2)
$$x^3 + 5x^2 + 3x - 9$$
: $r = -3$

5)
$$x^3 - 3x^2 + 4x - 4$$
; $r = 2$

3)
$$x^3 - 3x^2 + 4$$
; $r = 2$

6)
$$2x^3 + x^2 - 11x - 10$$
; $r = -1$

Perform the indicated division and write the result as a В. polynomial plus a fraction:

$$\frac{x^2 + 4x}{x^2 - 1}$$

$$2) \qquad \frac{x^3 - 2x^2 + 1}{x^2 + 1}$$

$$\frac{x^3+2}{x+2}$$

4)
$$\frac{x^3 + 3x + 5}{x + 2}$$

5)
$$\frac{x^4 - 2x^3 - 7x^2 + 4x + 7}{x^3 + 2x^2 + x}$$

$$6) \qquad \frac{x^4 - 3x^2 + 2}{x^3 + 4x}$$

Factor the following polynomials completely using special C. factorizations or the rational zeros test.

1)
$$x^4 - 16$$

6)
$$8x^2 - 10x - 3$$

11)
$$x^3 - 3x - 2$$

$$x^3 - 8$$

7)
$$x^4 - 10x^2 + 9$$

12)
$$x^3 - 4x^2 + x + 6$$

3)
$$x^2 - 2x - 15$$

8)
$$8x^3 + 27$$

13)
$$x^3 - 5x^2 - 2x + 24$$

4)
$$x^3 - 2x^2 - 24x$$

9)
$$x^4 + x^2 - 2$$

14)
$$x^3 - 9x^2 + 20x - 12$$

5)
$$6x^2 + x - 2$$

10)
$$x^3 - 2x^2 + 4x - 8$$

15)
$$x^4 + 3x^3 - 6x^2 - 28x - 24$$

ANSWERS

$$(x-1)(x+1)(x-4)$$

$$x(x+1)(x-2)(x-8)$$

$$(x+3)^2(x-1)$$

$$(x-2)(x^2-x+2)$$

3)
$$(x-2)^2(x+1)$$

6)
$$(x+1)(2x-5)(x+2)$$

B.

C.

1)
$$1 + \frac{4x+1}{x^2-1}$$

4)
$$x^2 - 2x + 7 - \frac{9}{x+2}$$

$$x-2+\frac{-x+3}{x^2+1}$$

5)
$$x-4+\frac{8x+7}{x^3+2x^2+x}$$

$$x^2 - 2x + 4 - \frac{6}{x + 2}$$

6)
$$x + \frac{-7x^2 + 2}{x^3 + 4x}$$

1)
$$(x-2)(x+2)(x^2+4)$$
 9) $(x-1)(x+1)(x^2+2)$

$$(x-1)(x+1)(x^2+2)$$

$$(x-2)(x^2+2x+4)$$

10)
$$(x-2)(x^2+4)$$

$$(x-5)(x+3)$$

11)
$$(x+1)^2(x-2)$$

$$x(x-6)(x+4)$$

12)
$$(x+1)(x-2)(x-3)$$

$$(3x+2)(2x-1)$$

13)
$$(x-3)(x-4)(x+2)$$

$$(4x+1)(2x-3)$$

14)
$$(x-1)(x-2)(x-6)$$

$$(x^2-1)(x^2-9) = (x-1)(x+1)(x-3)(x+3)$$

$$(2x+3)(4x^2-6x+9)$$
 15) $(x+2)^3(x-3)$

$$(X + Z) (X - Z)$$

ALGEBRA MODULE TWO

EXPONENTS AND RADICALS

REVIEW OF PROPERTIES OF EXPONENTS

Let x and y be real numbers, and let m and n be integers. **Example**

Property

$$x^m x^n = x^{m+n}$$

$$2^3 2^2 = 2^{3+2} = 2^5 = 32$$

$$2) \qquad \frac{x^m}{x^n} = x^{m-n}$$

$$\frac{x^5}{x^2} = x^{5-2} = x^3$$

3)
$$x^0 = 1$$

$$3^0 = 1$$

$$4) \qquad \frac{1}{y^n} = y^{-n}$$

$$\frac{1}{v^3} = y^{-3}$$

$$(x y)^m = x^m y^m$$

$$(4x)^3 = 4^3x^3 = 64x^3$$

6)
$$\left(x^{m}\right)^{n} = x^{mn}$$

$$\left(x^2\right)^3 = x^6$$

$$7) \qquad \left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$$

$$\left(\frac{5}{y}\right)^2 = \frac{25}{y^2}$$

THE NTH ROOT OF A REAL NUMBER

If a and b are nonnegative real numbers and n is a positive integer, or if a and b are negative real numbers and n is an odd positive integer, then the principal nth root of a is defined as $\sqrt[n]{a} = b$ if and only if $a = b^n$.

Note that even roots of positive numbers exist in pairs. (ie. $2^2 = 4$ and $(-2)^2 = 4$ so that 2 and -2 are both square roots of 4). On the other hand, $\sqrt{4} = 2$, not ± 2 because $\sqrt{4}$ denotes the principal nth root (positive) square root of 4.

Note that these roots can also be written in exponent form, so that $\sqrt{a} = a^{1/2}$, $\sqrt[3]{a} = a^{1/3}$, etc.

Examples:

1)
$$\sqrt{81} = 9$$
 because $9^2 = 81$

2)
$$27^{\frac{1}{3}} = 3$$
 because $3^3 = 27$

3)
$$\sqrt[5]{32} = 2$$
 because $2^5 = 32$

4)
$$\sqrt[5]{-32} = -2$$
 because $(-2)^5 = -32$

5)
$$16^{\frac{1}{4}} = 2$$
 because $2^4 = 16$

FRACTIONAL EXPONENTS

When we write a fractional exponent such as X^{n} , we can use property 6) above to evaluate the term.

1)
$$8^{\frac{2}{3}} = \left(8^{\frac{1}{3}}\right)^2 = 2^2 = 4$$

2)
$$8^{-\frac{2}{3}} = \frac{1}{\frac{2}{3}} = \frac{1}{4}$$

3)
$$(-8)^{\frac{2}{3}} = (-8)^{\frac{1}{3}})^2 = (-2)^2 = 4$$

4)
$$(-8)^{-\frac{2}{3}} = \frac{1}{(-8)^{\frac{2}{3}}} = \frac{1}{4}$$

RADICALS

A. Rewrite the expression to eliminate the radicals in the denominator.

1)
$$\frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$
 (this process is called rationalizing the denominator.)

For an expression with a sum or difference involving a radical, such as $x+b\sqrt{y}$ we can eliminate the radical in the denominator by multiplying the numerator and the denominator by the conjugate $x-b\sqrt{y}$. This is also called rationalizing. This process makes use of the difference of squares because

$$(x+b\sqrt{y})(x-b\sqrt{y}) = x^2 - b^2 y$$

2)
$$\frac{4}{3-\sqrt{2}} = \frac{4}{3-\sqrt{2}} \cdot \frac{3+\sqrt{2}}{3+\sqrt{2}} = \frac{4(3+\sqrt{2})}{9-2} = \frac{4(3+\sqrt{2})}{7}$$

$$3)\frac{4}{\sqrt{x+h}+\sqrt{x}} = \frac{4}{\sqrt{x+h}+\sqrt{x}} \cdot \frac{\sqrt{x+h}-\sqrt{x}}{\sqrt{x+h}-\sqrt{x}} = \frac{4(\sqrt{x+h}-\sqrt{x})}{x+h-x} = \frac{4(\sqrt{x+h}-\sqrt{x})}{h}$$

B. Rewrite the expression to eliminate the radicals in the numerator:

1)
$$\frac{\sqrt{3} - \sqrt{5}}{2} = \frac{\sqrt{3} - \sqrt{5}}{2} \cdot \frac{\sqrt{3} + \sqrt{5}}{\sqrt{3} + \sqrt{5}} = \frac{3 - 5}{2(\sqrt{3} + \sqrt{5})} = \frac{-2}{2(\sqrt{3} + \sqrt{5})} = \frac{-1}{\sqrt{3} + \sqrt{5}}$$

2)
$$\frac{\sqrt{x+2}-2}{x-2} = \frac{\sqrt{x+2}-2}{x-2} \cdot \frac{\sqrt{x+2}+2}{\sqrt{x+2}+2} = \frac{x+2-4}{(x-2)(\sqrt{x+2}+2)}$$
$$= \frac{x-2}{(x-2)(\sqrt{x+2}+2)} = \frac{1}{\sqrt{x+2}+2}$$

3)
$$\frac{\sqrt{x^2+5}-3}{x-2} = \frac{\sqrt{x^2+5}-3}{x-2} \cdot \frac{\sqrt{x^2+5}+3}{\sqrt{x^2+5}+3} = \frac{x^2+5-9}{(x-2)(\sqrt{x^2+5}+3)} = \frac{x^2-4}{(x-2)(\sqrt{x^2+5}+3)}$$

$$=\frac{(x-2)(x+2)}{(x-2)(\sqrt{x^2+5+3})}=\frac{x+2}{\sqrt{x^2+5+3}}$$

SOLVED PROBLEMS INVOLVING EXPONENTS

Simplify the following expressions

- 1) $(7^2a^2b^3)(7^4a^9b^2)$ Solution: Regrouping and combining like terms. $(7^2a^2b^3)(7^4a^9b^2) = (7^27^4)(a^2a^9)(b^3b^2) = 7^6a^{11}b^5$ (adding exponents)
- 2) $\frac{128x^3}{32x^5}$ Solution: We express 128 and 32 as powers of the common base 2. $\frac{128x^3}{32x^5} = \frac{2^7x^3}{2^5x^5} = 2^2x^{-2} \text{ (subtracting exponents)}$ $= \frac{4}{x^2} \qquad \left(x^{-2} = \frac{1}{x^2}\right)$
- 3) $\frac{(2x)^{-3}}{(3y)^{-2}}$ Solution: $(2x)^{-3} = \frac{1}{(2x)^3}$ and $(3y)^{-2} = \frac{1}{(3y)^2}$ So $\frac{(2x)^{-3}}{(3y)^{-2}} = \frac{(3y)^2}{(2x)^3} = \frac{3^2y^2}{2^3x^3} = \frac{9y^2}{8x^3}$
- 4) $(3x^{-2}y^3)^4$ Solution: $(3x^{-2}y^3)^4 = \left(\frac{3y^3}{x^2}\right)^4 = \frac{3^4y^{12}}{x^8} = \frac{81y^{12}}{x^8}$
- 5) $\left(\frac{4^{-2}x^{-4}}{4^{-5}y^{-3}}\right)^{3}$ Solution: We simplify the inside of the parenthesis first using

$$4^{-2} = \frac{1}{4^{2}} \qquad x^{-4} = \frac{1}{x^{4}}$$

$$\frac{1}{4^{-5}} = 4^{5} \qquad \frac{1}{y^{-3}} = y^{3}$$

So
$$\left(\frac{4^{-2}x^{-4}}{4^{-5}y^{-3}}\right)^5 = \left(\frac{4^5}{4^2}\frac{y^3}{x^4}\right)^5 = \left(\frac{4^3y^3}{x^4}\right)^5 = \frac{4^{15}y^{15}}{x^{20}}$$

6)
$$3^{2n+1} \cdot 3^{n-2}$$

Solution: We add the exponents and combine like terms.
 $3^{2n+1} \cdot 3^{n-2} = 3^{(2n+1)+(n-2)} = 3^{3n-1}$

7)
$$\frac{2^{4n+1}}{2^{5n-1}}$$
Solution: We subtract the exponents and combine like terms.
$$\frac{2^{4n+1}}{2^{5n-1}} = 2^{(4n+1)-(5n-1)} = 2^{(4n-5n)+(1--1)}$$

$$= 2^{-n+2}$$

$$= 2^{2-n} \text{ or } \frac{1}{2^{n-2}}$$

8)
$$\frac{4^{n+3}}{2^{n-1}}$$
Solution: Change 4 to 2^2 .
Thus

$$\frac{4^{n+3}}{2^{n-1}} = \frac{\left(2^2\right)^{n+3}}{2^{n-1}} = \frac{2^{2n+6}}{2^{n-1}} = 2^{(2n+6)-(n-1)}$$
$$= 2^{(2n-n)+(6--1)}$$
$$= 2^{n+7}$$

9)
$$\sqrt{50x^4y^8}$$
 Solution: Use the fact that $\sqrt{abc} = \sqrt{a} \sqrt{b} \sqrt{c}$.
$$\sqrt{50x^4y^8} = \sqrt{50} \sqrt{x^4} \sqrt{y^8}$$

$$= \sqrt{25} \sqrt{2} \sqrt{x^4} \sqrt{y^8}$$
 (NOTE: $\sqrt{x^4} = \sqrt{(x^2)^2} = x^2$
$$\sqrt{y^8} = \sqrt{(y^4)^2} = y^4$$
)
$$= 5\sqrt{2} x^2 y^4$$

$$= \sqrt{2}(5x^2y^4)$$

10)
$$\sqrt[3]{128x^4y^7}$$

Solution: Use the fact that $\sqrt[3]{abc} = \sqrt[3]{a} \sqrt[3]{b} \sqrt[3]{c}$.
Also $\sqrt[3]{x^3} = x$ $\sqrt[3]{y^6} = \sqrt[3]{(y^2)^3} = y^2$ and $128 = 2^7 = 2^6 \cdot 2^1$
So

$$\frac{\sqrt[3]{128x^4y^7}}{\sqrt[3]{26}} = \sqrt[3]{128} \sqrt[3]{x^4} \sqrt[3]{y^7}
= \left(\sqrt[3]{2^6} \sqrt[3]{2}\right) \left(\sqrt[3]{x^3} \sqrt[3]{x}\right) \left(\sqrt[3]{y^6} \sqrt[3]{y}\right)
= \left(\sqrt[3]{(2^2)^3} \sqrt[3]{2}\right) \left(x\sqrt[3]{x}\right) \left(y^2\sqrt[3]{y}\right)
= \left(2^2xy^2\right) \sqrt[3]{x} \sqrt[3]{2} \sqrt[3]{y} = \left(4xy^2\right) \sqrt[3]{2xy}$$

Solve for k.

1)
$$3^{n+1} \cdot 3^k = 3^{n-2}$$

Solution: $3^k = \frac{3^{n-2}}{3^{n+1}}$ (Divide by 3^{n+1}).
 $3^k = 3^{-2-1} = 3^{-3}$. (The n's cancel out.)

Comparing exponents we see k = -3.

2)
$$\frac{2^{n+3}}{2^{k+1}} = 2^{2n-1}$$
Solution: Subtracting exponents on the left side gives
$$2^{(n+3)-(k+1)} = 2^{2n-1}$$

$$= 2^{n-k+2} = 2^{2n-1}$$
Setting exponents equal and solving for k .
$$n - k + 2 = 2n - 1$$

$$(n+2) - (2n-1) = k$$

$$-n+3 = k$$
or $k = -n+3 = 3-n$

Evaluate: A.

1)
$$9^{\frac{3}{2}}$$

2)
$$(-27)^{\frac{2}{3}}$$

3)
$$8^{-4/3}$$

4)
$$16^{3/2}$$

1)
$$9^{3/2}$$
 2) $(-27)^{2/3}$ 3) $8^{-4/3}$ 4) $16^{3/4}$ 5) $(-32)^{-2/5}$

Solve for x: В.

1)
$$x^{\frac{2}{3}} = 4$$

2)
$$x^{\frac{3}{2}} = 8$$

3)
$$x^{\frac{3}{4}} = 8$$

3)
$$x^{\frac{3}{4}} = 8$$
 4) $x^{\frac{3}{5}} = -8$

Eliminate all radicals from the numerator and simplify: C.

1)
$$\frac{\sqrt{2}}{2}$$

2)
$$\frac{4-\sqrt{2}}{5}$$

3)
$$\frac{\sqrt{4+h}-2}{h}$$

3)
$$\frac{\sqrt{4+h}-2}{h}$$
 4) $\frac{\sqrt{x+h}-\sqrt{x}}{h}$

5)
$$\frac{\sqrt{x+7}-3}{x-2}$$

6)
$$\frac{\sqrt{x^2 + 16} - 5}{x - 3}$$
 7) $\frac{\sqrt{x^3 - 2} - 5}{x - 3}$ 8) $\frac{\sqrt{x^3 + 8} - 4}{x^3 + 4x - 16}$

7)
$$\frac{\sqrt{x^3-2}-5}{x-3}$$

$$8) \ \frac{\sqrt{x^3 + 8} - 4}{x^3 + 4x - 16}$$

D. Simplify:

1)
$$(9x^5)(27x^2)$$

$$2) \ \frac{1024x^{-4}y^{-2}}{64x^{-6}y^3}$$

3)
$$(3x^2y^{-3})^{-2}$$

4)
$$\left(\frac{25x^{-3}}{625y^{-2}}\right)^{-2}$$

5)
$$\frac{(2x^{-1}y^3)^3(4x^2y^{-3})^2}{(32x^{-5}y^4)^3}$$
 6)
$$\frac{(4x^{-3})^{-2}}{(5y^{-2})^{-4}}$$

6)
$$\frac{\left(4x^{-3}\right)^{-2}}{\left(5y^{-2}\right)^{-4}}$$

7)
$$\frac{5^{2n} \cdot 5^{n+1}}{5^{4n-2}}$$

7)
$$\frac{5^{2n} \cdot 5^{n+1}}{5^{4n-2}}$$
 8) $\frac{3^{n+1} \cdot 9^{n-1}}{(27)^{n+2}}$ 9) $\frac{(32)^{n+1}}{(64)^{n-1}}$ 10) $\sqrt[3]{54x^5y^{13}}$

9)
$$\frac{(32)^{n+1}}{(64)^{n-1}}$$

10)
$$\sqrt[3]{54x^5y^{13}}$$

1)
$$3^{n+2} 3^{k-1} = 3^{n-3}$$
 2) $\frac{2^{n+1}}{3^{k-1}} = 2^{3n}$

$$2) \quad \frac{2^{n+1}}{2^{k-1}} = 2^{3n}$$

1) 27 2) 9 3)
$$\frac{1}{16}$$
 4) 8 5) $\frac{1}{4}$

5)
$$\frac{1}{4}$$

B. 1)
$$x = 4^{\frac{3}{2}} = \pm 8$$

2)
$$x = 8^{\frac{2}{3}} = 4$$

3)
$$x = 8^{\frac{4}{3}} = 16$$

1)
$$x = 4^{\frac{3}{2}} = \pm 8$$
 2) $x = 8^{\frac{2}{3}} = 4$ 3) $x = 8^{\frac{4}{3}} = 16$ 4) $x = (-8)^{\frac{5}{3}} = -32$

C. 1)
$$\frac{1}{\sqrt{2}}$$

2)
$$\frac{14}{5(4+\sqrt{2})}$$

3)
$$\frac{1}{\sqrt{4+h}+2}$$

C. 1)
$$\frac{1}{\sqrt{2}}$$
 2) $\frac{14}{5(4+\sqrt{2})}$ 3) $\frac{1}{\sqrt{4+h}+2}$ 4) $\frac{1}{\sqrt{x+h}+\sqrt{x}}$ 5) $\frac{1}{\sqrt{x+7}+3}$

5)
$$\frac{1}{\sqrt{x+7}+3}$$

6)
$$\frac{x+3}{\sqrt{x^2+16}+5}$$

7)
$$\frac{x^2 + 3x + 9}{\sqrt{x^3 - 2} + 5}$$

6)
$$\frac{x+3}{\sqrt{x^2+16+5}}$$
 7) $\frac{x^2+3x+9}{\sqrt{x^3-2+5}}$ 8) $\frac{x^2+2x+4}{\left(x^2+2x+8\right)\left(\sqrt{x^3+8}+4\right)}$

D. 1)
$$3^5 x^7$$
 or $243x^7$

1)
$$3^5 x^7$$
 or $243x^7$ 2) $\frac{2^4 x^2}{y^5}$ or $\frac{16x^2}{y^5}$ 3) $\frac{y^6}{9x^4}$ 4) $\frac{625x^6}{y^4}$

3)
$$\frac{y^6}{9x^4}$$

4)
$$\frac{625x^6}{y^4}$$

5)
$$\frac{x^{16}}{256y^9}$$
 6) $\frac{625x^6}{16y^8}$

6)
$$\frac{625x^{\circ}}{16y^{8}}$$

7)
$$5^{3-n}$$
 or $\frac{1}{5^{n-3}}$

8)
$$\frac{1}{3^7}$$
 or $\frac{1}{2187}$

8)
$$\frac{1}{3^7}$$
 or $\frac{1}{2187}$ 9) 2^{-n+11} or $\frac{1}{2^{n-11}}$ 10) $(3xy^4)\sqrt[3]{2x^2y}$

10)
$$(3xy^4)\sqrt[3]{2x^2y}$$

E. 1)
$$k = -4$$

2)
$$k = -2n + 2$$

ALGEBRA MODULE THREE

RATIONAL FUNCTIONS

The properties for manipulations of fractions apply also to fractions of polynomials which are known as rational functions.

1) ADDITION:
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

2) MULTIPLICATION:
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

3) DIVISION:
$$\frac{a/b}{c/d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$
 and also $\frac{a/b}{c} = \frac{a}{b} \cdot \frac{1}{c} = \frac{a}{bc}$

Perform the indicated operations and simplify the result as much as possible:

1)
$$\frac{x+1}{x} + \frac{x}{x-1} = \frac{(x+1)(x-1) + x(x)}{x(x-1)} = \frac{x^2 - 1 + x^2}{x^2 - x} = \frac{2x^2 - 1}{x^2 - x}$$

2)
$$\frac{x-1}{x^2-2x} + \frac{2}{x^2-x-2} = \frac{x}{x(x-2)} + \frac{2}{(x-2)(x+1)}$$

Note that both fractions contain the factor x-2. Therefore, in finding the common denominator for the expression, we use the lowest common denominator (the LCD).

expression, we use the lowest common denominator (the ECD).
$$\frac{x-1}{x(x-2)} \cdot \frac{x+1}{x+1} + \frac{2}{(x-2)(x+1)} \cdot \frac{x}{x} = \frac{x^2 - 1 + 2x}{x(x-2)(x+1)} = \frac{x^2 + 2x - 1}{x(x-2)(x+1)}$$

3)
$$\frac{x^2}{x+2} \cdot \frac{x+2}{x^2-3x} = \frac{x^2(x+2)}{(x+2)x(x-3)} = \frac{x}{x-3}$$

4)
$$\frac{\frac{x^2 - 4}{x}}{\frac{x - 2}{x^2}} = \frac{(x - 2)(x + 2)}{x} \cdot \frac{x^2}{x - 2} = (x + 2)x = x^2 + 2x$$

5)
$$\frac{\frac{1}{5} - \frac{1}{x}}{x - 5} = \frac{x - 5}{5x} = \frac{x - 5}{5x(x - 5)} = \frac{1}{5x}$$

6)
$$\frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \frac{\frac{x - (x+h)}{(x+h)(x)}}{h} = \frac{x - x - h}{(x+h)(x)} \cdot \frac{1}{h} = \frac{-h}{(x+h)(x)(h)} = \frac{-1}{(x+h)(x)}$$

PROBLEMS

Perform the indicated operation and write the answer in factored form where possible:

$$1) \ \frac{x}{x+3} - \frac{x-2}{x}$$

2)
$$\frac{2}{x^2-4} + \frac{1}{x^2+3x+2}$$

3)
$$\frac{1}{x+2} + \frac{4}{x^2 - x - 6}$$

4)
$$\frac{x^2-9}{x^3} \cdot \frac{x}{x^2+4x+3}$$

4)
$$\frac{x^2 - 9}{x^3} \cdot \frac{x}{x^2 + 4x + 3}$$
 5) $\frac{\frac{x^2 + 2x + 1}{x + 2}}{\frac{x + 1}{x^2 + x - 2}}$

$$6) \quad \frac{x^2 - 3x - 4}{x}$$

7)
$$\frac{\frac{1}{7} - \frac{1}{x}}{x - 7}$$

8)
$$\frac{\frac{1}{x} - \frac{1}{3}}{\frac{x^2 - 9}{3}}$$

9)
$$\frac{\frac{1}{4} - \frac{1}{x+2}}{x^2 - 3x + 2}$$

10)
$$\frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$$

11)
$$\frac{\frac{1}{6} + \frac{1}{x+3}}{x^2 + 5x - 36}$$

ANSWERS

$$1) \ \frac{-x+6}{x(x+3)}$$

2)
$$\frac{3x}{(x-2)(x+2)(x+1)}$$

3)
$$\frac{x+1}{(x-3)(x+2)}$$

4)
$$\frac{x-3}{x^2(x+1)}$$

5)
$$(x+1)(x-1)$$

$$6) \ \frac{x+1}{x}$$

7)
$$\frac{1}{7x}$$

8)
$$\frac{-1}{3x(x+3)}$$

9)
$$\frac{1}{4(x+2)(x-1)}$$

10)
$$\frac{-2x-h}{(x+h)^2x^2}$$

11)
$$\frac{1}{6(x+3)(x-4)}$$

