Dawson (College:	Linear	Algebra:	201-105-dw-S03:	Fall 2012
Dawson	Concec.	Lincar	Aigunia.	201-103-uw-303.	1 411 2012

Name:	
Student ID:	

Test 1

This test is graded out of 55 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (10 marks) Solve the following system by Gauss-Jordan elimination:

$$3x_1 - x_2 + x_3 - 3x_4 + x_5 = 3$$

 $4x_1 + 3x_2 - x_3 + x_4 - x_5 = 2$
 $7x_1 + 2x_2 - 2x_4 + 2x_5 = 1$

Question 2. Consider the matrices:

$$A = \begin{bmatrix} -1 & 0 & 2 \\ 0 & 4 & -3 \\ 2 & -1 & -2 \end{bmatrix}, B = \begin{bmatrix} 0 & -4 & 0 \\ 2 & 2 & 1 \end{bmatrix} C = \begin{bmatrix} 0 & 1 \\ -3 & 2 \\ 0 & -1 \end{bmatrix} D = \begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix} E = \begin{bmatrix} 2 & 0 & 0 \\ -4 & 0 & 0 \\ 1 & 2 & 3 \end{bmatrix}$$

a. (2 marks) Compute the following, if possible.

$$E^{-1}$$

b. (2 marks) Compute the following, if possible.

$$D-BC$$

c. (2 marks) Compute the following, if possible.

d. (3 marks) Compute the following, if possible.

$$C^tB^t$$

e. (3 marks) Compute the following, if possible.

$$AB^{t}$$

f. (5 marks) Find F, if possible.

$$(F^{-1} + 2I)^{-1} = (BC)^t$$

Question 3. (5 marks) Solve the following system by Gaussian elimination:

Question 4. (6 marks) Express

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

and A^{-1} as a product of elementary matrices. Explicitely write all elementary matrices.

Question 5. (7 marks) Solve the system by using and inverting the coefficient matrix.

Question 6. A square matrix A is said to be *skew-symmetric* if $A^T = -A$. Prove:

- a. (2 marks) If A is an invertible skew-symmetric matrix, then A^{-1} is skew-symmetric.
- b. (3 marks) If A and B are skew-symmetric matrices, then so are A^T , $A \pm B$, and kA for any scalar.

Question 7. (5 marks) Determine the conditions on the b_i 's, if any, in order to guarantee that the linear system is consistent

$$3x_1 - 2x_2 + 3x_3 = 1$$

 $6x_1 - 6x_2 + 6x_3 = b_1$

Bonus Question. (5 marks) Prove that if $ad - bc \neq 0$, then the reduced row echelon form of