Dawcon	College:	I inear	Algebra	201-105-dw	S04·	Fall 2012
Dawson	Conege.	Lillear	Aigebra.	ZU1-1U3-UW	-304.	Fan 2012

Name:	
Student ID:	

Test 1

This test is graded out of 55 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (10 marks) Solve the following system by Gauss-Jordan elimination:

Question 2. Consider the matrices:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 2 & 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 2 & 2 & 1 \\ 0 & -4 & 0 \end{bmatrix} C = \begin{bmatrix} 0 & 1 \\ -3 & 0 \\ 3 & -1 \end{bmatrix} D = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$$

a. (2 marks) Compute the following, if possible.

$$C-D$$

b. (2 marks) Compute the following, if possible.

$$BC-D$$

c. (2 marks) Compute the following, if possible.

d. (2 marks) Compute the following, if possible.

e. (3 marks) Compute the following, if possible.

$$C^t B^t$$

f. (2 marks) Compute the following, if possible.

g. (5 marks) Find E, if possible.

$$(I - DE)^{-1} = (BC)^t$$

Question 3. (5 marks) Given the following augmented matrix in row-echelon form, solve the system using back substitution.

$$\begin{bmatrix} 1 & 3 & -3 & 1 & 4 & 3 \\ 0 & 0 & 1 & -2 & 3 & -2 \\ 0 & 0 & 0 & 1 & 2 & 4 \end{bmatrix}$$

Question 4. (5 marks) Express

$$A = \begin{bmatrix} 3 & 4 \\ 5 & -2 \end{bmatrix} B = \begin{bmatrix} 3 & 4 \\ 8 & 2 \end{bmatrix}, C = \begin{bmatrix} 3 & 4 \\ 4 & 1 \end{bmatrix}$$

Find the elementary matrices E_1 and E_2 (if possible) such that

- a. $(2 \text{ marks}) E_1 A = B$
- b. $(2 \text{ marks}) E_2 B = C$
- c. (2 marks) Are the matrices A and C row equivalent, justify?

Question 5. (5 marks) Find the inverse of

$$A = \begin{bmatrix} 2 & 3 & 0 \\ 3 & 4 & 0 \\ 0 & -6 & 1 \end{bmatrix}$$

Question 6. A square matrix A is said to be idempotent if $A^2 = A$.

- a. (2 marks) Show that if A is idempotent, then so is I A.
- b. (3 marks) Show that if A is idempotent, then 2A I is invertible and is its own inverse.

Question 7. Consider the following system:

$$x + y + 7z = -7$$

 $3y + 17z = -16$
 $a(a^2+1)z = 3a+3$

where $a \in \mathbb{R}$, determine the values of a so that the system has

- a. (2 marks) a unique solution, justify.
- b. (2 marks) infitely many solutions, justify.
- c. (2 marks) no solutions, justify.

Bonus Question. (5 marks) Show that the following nonlinear system has 18 solutions if $0 \le \alpha \le 2\pi$, $0 \le \beta \le 2\pi$, and $0 \le \gamma \le 2\pi$.