\qquad
Name:

Student ID:

Test 1

This test is graded out of 55 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1.

a. (6 marks) Solve the following system by Gauss-Jordan elimination:

$$
\begin{array}{r}
2 x_{1}-x_{2}+x_{3}-3 x_{4}=3 \\
3 x_{1}+3 x_{2}-x_{3}+x_{4}=5 \\
5 x_{1}+2 x_{2}-2 x_{4}=8 \\
x_{3}-x_{4}=1
\end{array}
$$

b. (2 marks) Find two particular solution to the above system.

Question 2. Consider the matrices:
$A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 2 & 3 & 4\end{array}\right], B=\left[\begin{array}{ccc}2 & 2 & 1 \\ 0 & -4 & 0\end{array}\right] C=\left[\begin{array}{cc}0 & 1 \\ -3 & 0 \\ 3 & -1\end{array}\right] \quad D=\left[\begin{array}{cc}0 & 1 \\ 1 & -2\end{array}\right]$
a. (1 mark) Compute the following, if possible.

$$
C-D
$$

b. (2 marks) Compute the following, if possible.
$(B C)^{t}$
c. (2 marks) Compute the following, if possible.

$$
A^{2}
$$

d. (2 marks) Compute the following, if possible.

$$
\operatorname{tr}\left(A^{2}+C B\right)
$$

g. (5 marks) Find E, if possible.

$$
\left(2 I-(D E)^{t}\right)^{-1}=(B C)^{t}
$$

Question 3. (4 marks) Given the following augmented matrix in row-echelon form, solve the system using back substitution.
$\left[\begin{array}{cccccc}1 & 5 & -3 & 2 & 4 & 0 \\ 0 & 0 & 1 & -2 & 3 & -1 \\ 0 & 0 & 0 & 1 & 2 & 2\end{array}\right]$

Question 4. ${ }^{1}$ Let A and B be $n \times n$ invertible matrices, and $A B$ is its own inverse (i.e. $\left.(A B)^{-1}=A B\right)$.
a. (2 marks) Prove that $B A$ is invertible and is its own inverse.
b. (2 marks) Evaluate and simplify $(A B+I)^{2}$
c. $(2$ marks $)$ Evaluate and simplify $(A B+I)^{8}$

[^0]
Question 5. Let A and B be $n \times n$ matrices. Prove that

a. (2 marks) if $A B=B A$ then $A^{t} B^{t}=B^{t} A^{t}$
b. (2 marks) if $A^{t} B^{t}=B^{t} A^{t}$ then $A B=B A$

Question 6. ${ }^{2}$ Let

$$
A=\left[\begin{array}{ll}
2 & 1 \\
x & y
\end{array}\right]
$$

a. (2 marks) Find x and y such that $A^{2}=0$, if possible.
b. (2 marks) Find x and y such that $A^{2}=I$, if possible.

Question 7. Consider the following system:

$x+y+$	$7 z$	$=$	-1
$x+2 y+$	$3 z$	$=$	3
$2 x+3 y+$	$\left(a^{2}+11\right) z$	$=$	$3 a+5$

where $a \in \mathbb{R}$, determine the values of a so that the system has
a. (2 marks) a unique solution, justify.
b. (2 marks) infinitely many solutions, justify.
c. (2 marks) no solutions, justify.

Bonus Question. (5 marks) Let $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, where A, B, C, and D are all $n \times n$ matrices and each commutes with all the others. If $M^{2}=\mathbf{0}$, prove that $(A+D)^{3}=\mathbf{0}$.

[^0]: ${ }^{1}$ From a John Abbott Final Examination

