Dawson College:	Linear Algebra	(SCIENCE):	201-NYC-05-S4: Fall 2014
Danson Concec.	Lincai ingcora	(DCILITEL).	201 111 2 03 34. 1 411 2014

Name:	
Student ID:	

Quiz 10

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (5 marks) §3.5 #35 Show that if \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbf{R}^3 , no two of which are collinear, then $\vec{u} \times (\vec{v} \times \vec{w})$ lies in the plane determined by \vec{v} and \vec{w} .

Question 2. §3.5 #27

- a. (3 marks) Find the area of the triangle having vertices A(1,0,1), B(0,2,3), and C(2,1,0).
- b. (2 marks) Use the result of part a. to find the length of the altitude from vertex C to side AB.

Question 3. (4 marks) Given

$$B = \begin{bmatrix} -2 & 3 & 2 & 6 \\ 0 & 2 & 3 & -3 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & -12 \end{bmatrix}$$

If E is an invertible matrix then evaluate $\det(E^{-1})^4 \det(\det(E) \operatorname{adj}(B))$, justify fully.

Question 4. (2 marks) Prove or disprove: The general solution of the nonhomogeneous linear system Ax = b can be obtained by adding b to the general solution of the homogeneous linear system Ax = 0.