Name: YLamontogne Student ID

Quiz 9

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (1 mark) §3.4 #1 Find the parametric equation of the line containing the point and parallel to the vector. Point: (-4, 1); vector: $\vec{v} = (0, -8)$.

$$x = P_0 + t\hat{v} = (-4,1) + t(0,-8)$$
, $t \in \mathbb{R}$

Question 2. (1 mark) §3.4 #9 Find the parametric equation of the plane containing the point and parallel to the vector. Point: (-3,1,0); vector: $\vec{v_1} = (0, -3, 6)$ and $\vec{v_2} = (-5, 1, 2)$.

$$x = P_0 + \dot{s}\dot{V}_1 + \dot{t}\dot{V}_2 = (-3,1,0) + \dot{s}(0,-3,6) + \dot{t}(-5,1,2)$$
 $s,\dot{t} \in \mathbb{R}$

Question 3. (3 marks) §3.4 #9 Find the parametric equations of the plane in \mathbb{R}^3 that passes through the origin and is orthogonal to

$$\vec{v} = (4,0,-5)$$

$$4x + 6y + 6z = 6$$
 $4x - 5z = 6$
 $4(6) - 5(6) = 6$
 $6 = 6$

$$ax + by + cz = d$$
 $4x - 5z = d$
 $4x - 5z = d$

Question 4. §3.4 #23

- a. (1 mark) Find a homogeneous linear system of two equations in three unknowns whose solution space consistes of those vectors in \mathbb{R}^3 that are orthogonal to $\vec{a} = (1, 1, 1)$ and $\vec{b} = (-2, 3, 0)$.
- b. (2 marks) What kind of geometric object is the solution space?
- c. (2 marks) Find a general solution of the system obtained in part a.

a)
$$x + y + z = 0$$

 $-2x + 3y = 0$

$$C) \begin{bmatrix} 1 & 1 & 1 & 0 \\ -2 & 3 & 0 & 0 \end{bmatrix}$$

Let
$$z=t$$

 $x = -\frac{2}{5}t$ $X = (x, y, z)$
 $y = -\frac{2}{5}t$ $= (-\frac{2}{5}t, -\frac{2}{5}t, t)$
 $= t(-\frac{2}{5}, -\frac{2}{5}, 1)$

