Dawson	College:	Linear	Algebra:	201-NYC	-05-S04:	Fall 2014
Da woon	Concec.	Lincar	migunia.	201 111 0	05 504.	1 411 2017

Name:	
Student ID:	

Test 1

This test is graded out of 45 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1.

a. (6 marks) Solve the following system by Gauss-Jordan elimination:

b. (2 marks) Find two particular nontrivial solution to the above system.

Question 2. Consider the matrices:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 2 & 1 \\ 0 & -4 & 0 \end{bmatrix} C = \begin{bmatrix} 0 & 1 \\ -3 & 0 \\ 3 & -1 \end{bmatrix} D = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} F = \begin{bmatrix} 1 & -1 \\ 0 & -2 \\ 1 & -3 \end{bmatrix}$$

a. (2 marks) Compute the following, if possible.

b. (2 marks) Compute the following, if possible.

$$A^{-2}$$

c. (6 marks) Find E, if possible.

$$(\operatorname{tr}(D)D - E^t)^{-1} = BA^{-2}F$$

Question 3. Consider

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}.$$

- a. $(4 \text{ marks}) \text{ Find } A^{-1}$.
- b. (2 marks) Write A^{-1} as a product of elementary matrices.
- c. (2 marks) Using a. solve Ax = b where $x = [x_1, x_2, x_3]^t$ and $b = [1, -2, 1]^t$.

Question 4.1

a. $(2 \text{ marks}) \operatorname{Let} A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Find a 2×2 matrix B such that $AB = \mathbf{0}$ but $BA \neq \mathbf{0}$.

b. Let *A* and *B* be non-zero $n \times n$ matrices such that $AB = \mathbf{0}$ but $BA \neq \mathbf{0}$.

- i. (2 marks) Prove that $(BA)^2 = \mathbf{0}$
- ii. (2 marks) Prove that B is singular.

Question 5.2 (4 marks) Let

$$A = \begin{bmatrix} 2 & 1 \\ x & y \end{bmatrix}$$

Find x and y such that A^2 is symmetric, if possible.

¹From a John Abbott Final Examination

²From a John Abbott Final Examination

Question 6.³ A matrix X is called a *weak generalized inverse* of A if AXA = A

- a. (3 marks) For what value of k is $\begin{bmatrix} k & k \\ k & k \\ k & k \end{bmatrix}$ a weak generalized inverse of $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
- b. (2 marks) Show that if the system $A\mathbf{x} = \mathbf{b}$ is consistent then $X\mathbf{b}$ will be a solution to this system

³From a John Abbott Final Examination

Question 7.(6 marks) Consider the following systems:

and

If any, for what value(s) of c_1, c_2 are both systems consistent.

Bonus Question. (5 marks) If A is 2×2 , show that $A^{-1} = A^T$ if and only if $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ for some θ or $A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$ for some θ .