Name: Student ID:

Test 3

This test is graded out of 40 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. Given

A(1,2), B(-1,1), C(3,1)

- a. (3 marks) Find the area of the parallelogram generated by \vec{AB} and \vec{AC} .
- b. (1 mark) Find the area of the triangle with vertices A, B and C.
- c. (2 marks) Find the length of the altitude of the triangle ABC from vertex C to side AB.
- d. (1 mark) Find the shortest distance from C to the line that contains A and B.

Question 2. Given

\mathscr{L}_1 :	(x, y, z)	=	(2+5t, 1+t, -t)	$t \in \mathbb{R}$
\mathscr{L}_2 :	(x, y, z)	=	(7+2t, 4, 10t)	$t \in \mathbb{R}$
\mathscr{L}_3 :	(x, y, z)	=	(9-t, 2, 9-5t)	$t \in \mathbb{R}$
\mathscr{P}_1 :	x - 2y + 3z - 11	=	0	
\mathcal{P}_2 :	-5x - y + z + 31	=	0	

- a. (2 marks) Are \mathcal{P}_2 and \mathcal{L}_3 parallel, perpendicular, or neither, justify? If they intersect find the point of intersection.
- b. (4 marks) Are \mathcal{L}_2 and \mathcal{P}_1 parallel, perpendicular, or neither, justify? If they intersect find the point of intersection.
- c. (5 marks) Are \mathscr{L}_1 and \mathscr{L}_2 parallel, perpendicular, or neither, justify? Find the shortest distance between the two lines using projections.

Question 4. Let $\mathscr{H} = \left\{ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ with the usual addition and scalar multiplication.

- a. (2 marks) Give an example of a non-zero matrix in $\mathcal{H}?$ Justify.
- b. (2 marks) Does \mathscr{H} satisfy closure under vector addition? Justify.
- c. (2 marks) Does \mathscr{H} contain the zero vector of $\mathscr{M}_{2\times 2}$ (the vector space of 2×2 matrices)? Justify.
- d. (2 marks) Does \mathscr{H} satisfy closure under scalar multiplication? Justify.
- e. (2 marks) Is \mathscr{H} a vector subspace of $\mathscr{M}_{2\times 2}$ (the vector space of 2×2 matrices)? Justify.

Question 5. (2 marks) Prove or disprove: For all vector vectors \vec{u} , \vec{v} and \vec{w} in 3-space, the vectors $(\vec{u} \times \vec{v}) \times \vec{w}$ and $\vec{u} \times (\vec{v} \times \vec{w})$ are the same.

Question 6. (2 marks) Prove: If \vec{a} and \vec{b} are orthogonal vectors, then for every nonzero vector \vec{u} , we have

 $\operatorname{proj}_{\vec{a}}(\operatorname{proj}_{\vec{b}}(\vec{u}) = \vec{0}$

Question 7. (2 marks) Show that if \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^3 no which are collinear, then $\vec{u} \times (\vec{v} \times \vec{w})$ lies in the plane determined by \vec{v} and \vec{w} .

Question 8. (2 marks) Prove: If \vec{u} , \vec{v} , and \vec{w} are vectors in a vector space V and $\vec{u} + \vec{w} = \vec{v} + \vec{w}$, then $\vec{u} = \vec{v}$. (cancellation law for vector addition). Show EVERY step and justify EVERY step with axiom names when an axiom is used

Question 9. (2 marks) Determine wether the following is a vector space:

$$\mathscr{P} = \left\{ a_0 + a_1 x + a_2 x^2 \mid a_0 + a_1 + a_2 = 1 \right\}$$

with the usual polynomial addition and scalar multiplication. i.e.

$$p_1(x) + p_2(x) = (a_0 + a_1x + a_2x^2) + (b_0 + b_1x + b_2x^2) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$$

and

$$kp_1(x) = k(a_0 + a_1x + a_2x^2) = ka_0 + ka_1x + ka_2x^2$$

Bonus Question. (5 marks) If U and W are subspaces of a vector space V, let

$$U \cup W = \left\{ \vec{v} \mid \vec{v} \in U \text{ or } \vec{v} \in W \right\}.$$

Show that $U \cup W$ is a subspace if and only if $U \subseteq W$ or $W \subseteq U$ (where $A \subseteq B$ means A is a subset of B or is B).