Dawson	College:	Linear	Algebra:	201-NYC	-05-S06:	Fall 2015
Dawson	Concec.	Lincar	AIZUDI a.	201-I11C	-05-500.	1 an 2013

Name:	
Student ID:	

Test 1

This test is graded out of 46 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1.

a. (6 marks) Solve the following system by Gauss-Jordan elimination:

$$3x_1 + 3x_2 + 7x_3 - 3x_4 + x_5 = 3$$

 $2x_1 + 3x_2 + 3x_3 + x_4 - 2x_5 = 1$
 $4x_1 + 17x_3 - 2x_4 - x_5 = 1$

- b. (1 mark) Find two particular solution to the above system.
- c. (1 mark) Find a solution to the above system where $x_3 = 1$.

Question 2. Consider the matrices:

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & -1 & 0 \\ 3 & 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 & 1 \\ -3 & -4 & 0 \end{bmatrix} C = \begin{bmatrix} 2 & 1 \\ 0 & 2 \\ 3 & -1 \end{bmatrix} D = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} F = \begin{bmatrix} 5 & -1 \\ 0 & -2 \\ 1 & 0 \end{bmatrix}$$

a. (2 marks) Compute the following, if possible.

b. (2 marks) Compute the following, if possible.

c. (2 marks) Compute the following, if possible.

$$(FD^{-1})^{T}$$

d. (5 marks) Find E, if possible.

$$(I - E^T)^{-1} = (\operatorname{tr}(D)D^2)^T$$

Question 3. Consider

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 4 & 3 & 0 \\ 3 & 2 & \frac{1}{2} \end{bmatrix}.$$

- a. $(5 \text{ marks}) \text{ Find } A^{-1}$.
- b. (3 marks) Solve for X where AX = B and

$$B = \begin{bmatrix} 1 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 2 & -1 \\ -4 & 2 & \frac{1}{2} & 0 & 0 \end{bmatrix}$$

Question 4. (4 marks) Prove: Let A be a square matrix. If $A^4 = AAAA = 4I$ then A is invertible.
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$
Question 5. (4 marks) Prove: $AB = BA$ if and only if $(A + B)(A - B) = (A - B)(A + B)$

Question 6. (5 marks) Express

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$

as a product of 4 elementary matrices.

Question 7. The augmented matrix of a linear system is given by

$$\begin{bmatrix} 1 & 2 & 3 & 4 & \pi \\ 0 & \sqrt{2} & 4 & 5 & 6 \\ 0 & 0 & 0 & a^2 - 1 & b^2 - a^2 \end{bmatrix}$$

If possible for what values of a and b there is

- a. (2 marks) no solution? Justify.
- b. (2 marks) exactly one solution? Justify.
- c. (2 marks) infinitely many solutions? Justify.

Bonus Question. (5 marks) If A, B and A + B are invertible matrices of the same size then show that $A^{-1} + B^{-1}$ is invertible and find a formula for $(A^{-1} + B^{-1})^{-1}$.