Dawson Conege. Linear Argebra (Science). 201-N 1 C-03-57. Tan 20	(SCIENCE): 201-NYC-05-S7: Fall 2015	ra (SCIENCE)	Linear Algebra	College:	Dawson
--	-------------------------------------	--------------	----------------	----------	---------------

Name:	·
Student ID:	

Quiz 3

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. §1.2 #5i (3 marks) Consider the matrices

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

Compute the given expression (if possible): $tr(DD^T)$.

Question 2. §1.3 #20b (2 marks) Show that if A is an $m \times n$ matrix and A(BA) is defined, then B is an $n \times m$ matrix.

Question 3. §1.4 #16 (3 marks) Use the given information to find A.

$$(5A^T)^{-1} = \begin{bmatrix} -3 & -1 \\ 5 & 2 \end{bmatrix}$$

Question 4. §1.4 #TF (2 marks) Determine whether the statement is true or false, and justify your answer. Two $n \times n$ matrices, A and B, are inverses of one another if and only if AB = BA = 0.