Name:	
Student ID:	

Test 1

This test is graded out of 46 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1.

a. (6 marks) Solve the following system by Gauss-Jordan elimination:

- b. (1 mark) Find two particular nontrivial solution to the above system.
- c. (1 mark) Find a solution to the above system where $x_1 = 1$.

Question 2. Consider the matrices:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 3 \\ 0 & 3 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 0 \\ -3 & 4 & 0 \end{bmatrix} C = \begin{bmatrix} 2 & -1 \\ 1 & 2 \\ 0 & 1 \end{bmatrix} D = \begin{bmatrix} 2 & -2 \\ 1 & -2 \end{bmatrix} F = \begin{bmatrix} 2 & -1 \\ 3 & -2 \\ 1 & 0 \end{bmatrix}$$

a. (2 marks) Compute the following, if possible.

BIF

b. (2 marks) Compute the following, if possible.

ACAB

c. (2 marks) Compute the following, if possible.

$$F(D^{-1})^T B$$

d. (5 marks) Determine E, if possible.

$$DED^T = \operatorname{tr}(BIF)BF$$

Question 3. Consider

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 4 & 9 & 0 \\ 3 & 2 & 1 \end{bmatrix}.$$

a.
$$(4 \text{ marks}) \text{ Find } A^{-1}$$
.

b. (4 marks) Determine X, if possible.

$$(I + AX)^{-1} = \operatorname{tr}(A)I$$

Question 6. Let

$$A = \begin{bmatrix} 1 & -1 & 3 & 2 \\ 0 & 1 & 4 & 1 \\ 1 & 0 & 8 & 6 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & 4 & 5 \\ -2 & 1 & -11 & -8 \\ -1 & 2 & 2 & 2 \end{bmatrix}$$

- a. (5 marks) Show that A and B have the same reduced row echelon matrix.
- b. (3 marks) Justify using a. that A and B are row equivalent.

Question 7. (3 marks) The augmented matrix of a linear system is given by

$$\begin{bmatrix} 1 & 3 & 1 & -4 & b_1 \\ 3 & -2 & 4 & 5 & b_2 \\ 4 & 1 & 5 & 1 & b_3 \\ 7 & -1 & 9 & 6 & b_4 \end{bmatrix}$$

Determine the restrictions on the b_i 's for the system to be consistent.

Bonus Question.

Given

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 2 \\ 2 & 0 & 2 \end{bmatrix}$$

where the entries of the matrix are elements of \mathbb{Z}_3 . Operations on the elements of \mathbb{Z}_3 can be defined by the following Cayley tables:

+	0	1	2		0		
0	0	1	2	0	0	0	0
1	1	1 2 0	0	1	0 0 0	1	2
2	2	0	1	2	0	2	1

- a. (2 marks) Find the inverse of A, if possible.
- b. (3 marks) Find all the solutions of

$$A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

where $x_i \in \mathbb{Z}_3$ and the entries of the constant matrix are elements of \mathbb{Z}_3 .