Name: Student ID:

Test 3

This test is graded out of 40 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. Given

$$\begin{array}{rcl} \mathscr{L}_1\colon & (x,y,z) &=& (t,1-t,-1+t) & t\in\mathbb{R}\\ \mathscr{L}_2\colon & (x,y,z) &=& (1-2t,t,-1+2t) & t\in\mathbb{R} \end{array}$$

a. (7 marks) Find the point on each line which is closest to the other.

b. (2 marks) Find the distance between the two lines.

Question 2. (3 marks) Prove or disprove: If \mathbf{x}_1 and \mathbf{x}_2 are two solutions of the nonhomogeneuous linear system $A\mathbf{x} = \mathbf{b}$, then $\mathbf{x}_1 - \mathbf{x}_2$ is a solution of the corresponding homogeneuous linear system $A\mathbf{x} = 0$.

Question 3. (4 marks) Determine the area of the triangle generated by the vectors \vec{u} and \vec{v} if $\vec{u} \cdot (\vec{v} \times (\vec{u} \times \vec{v})) = 1936$

Question 4. Let $\vec{u} = (1, \lambda, -\lambda)$, $\vec{v} = (-2\lambda, -2, 2\lambda)$ and $\vec{w} = (\lambda - 2, -5\lambda - 2, -2)$.

- a. (2 marks) For what value(s) of λ will $\{\vec{u}, \vec{v}\}$ be linearly dependent.
- b. (3 marks) For what value(s) of λ will $\{\vec{u}, \vec{v}, \vec{w}\}$ be linearly independent.

- **Question 5.**¹ Let $\vec{u}, \vec{v}, \vec{p}$, and \vec{q} be non-zero vectors in \mathbb{R}^3 and suppose span $(\{\vec{u}, \vec{v}\}) = \text{span}(\{\vec{p}, \vec{q}\})$
 - a. (2 marks) If span($\{\vec{u}, \vec{v}\}$) is a line explain why $(\vec{u} \times \vec{v}) \times (\vec{p} \times \vec{q}) = \vec{0}$.
 - b. (2 marks) If span($\{\vec{u}, \vec{v}\}$) is a plane explain why $(\vec{u} \times \vec{v}) \times (\vec{p} \times \vec{q}) = \vec{0}$.

¹From a John Abbott final examination

Question 6. Let $V = \{A \mid A \in \mathcal{M}_{3 \times 3} \text{ and } A \text{ has a RREF with 2 or less leading ones} \}.$

- a. (2 marks) Does V satisfy closure under vector addition? Justify.
- b. (2 marks) Does V contain a zero vector? If so find it. Justify.
- c. (2 marks) Does V satisfy closure under scalar multiplication? Justify.
- d. (2 marks) Is V a subspace of $\mathcal{M}_{3\times 3}$? Justify.

Question 7. (7 marks) $W = \{p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 | p(1) = 0 \text{ and } p(-1) = 0\}$ a subspace of P_3 . Find a basis B for W. Find the coordinate vector of $p(x) = -1 - x + x^2 + x^3$ relative to the basis B.

Bonus Question. (5 marks) Given

 $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$

where the entries of the matrix are elements of \mathbb{Z}_3 . Operations on the elements of \mathbb{Z}_3 can be defined by the following Cayley tables:

+	0	1	2	\times	0	1	2
0	0	1	2	0	0	0	0
1	1	2	0	1	0	1	2
2	2	0	1	2	0	2	1

List all the vectors of the vector space $V = \{x \mid x \in \mathbb{Z}_3^3 \text{ and } Ax = 0\}$ over \mathbb{Z}_3 .