Name:

Quiz 6

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. $\S 1.6$ \#16 (5 marks) Determine conditions on the b_{i} 's, if any, in order to guarantee that the linear system is consistent.

$$
\begin{aligned}
x_{1}-2 x_{2}-x_{3} & =b_{1} \\
-4 x_{1}+5 x_{2}+2 x_{3} & =b_{2} \\
-4 x_{1}+7 x_{2}+4 x_{3} & =b_{3}
\end{aligned}
$$

Question 2. §1.7 \#23 (2 marks) Find all values of the unknown constant(s) in order for A to be symmetric.

$$
\left[\begin{array}{cc}
4 & -3 \\
a+5 & -1
\end{array}\right]
$$

Question 3. $\S 1.7 \# 37 \mathrm{a}$ (3 marks) A square matrix A is called skew-symmetric if $A^{T}=-A$. Prove: If A is an invertible skew-symmetric matrix, then A^{-1} is skew-symmetric.

Question 4. (5 marks) Consider the matrices:

$$
A=\left[\begin{array}{cc}
1 & 2 \\
3 & 2 \\
1 & -1
\end{array}\right], B=\left[\begin{array}{ccc}
2 & -5 & 2 \\
-3 & 2 & 1
\end{array}\right], C=\left[\begin{array}{cc}
1 & 2 \\
5 & 0
\end{array}\right], D=\left[\begin{array}{cc}
-1 & 1 \\
4 & -3
\end{array}\right], E=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Solve for X if possible.

$$
C\left((D X)^{T}-2 I\right)^{-1}=C
$$

