Name: Y. Lamontagne

## Quiz 7

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

**Question 1.** §2.1 #16 (5 marks) Find all the values of  $\lambda$  for which det(A) = 0.

$$A = \begin{bmatrix} \lambda - 4 & 0 & 0 \\ 0 & \lambda & 2 \\ 0 & 3 & \lambda - 1 \end{bmatrix}$$

$$0 = \det(A)$$

$$0 = \alpha_{11}C_{11} + \alpha_{12}C_{12} + \alpha_{13}C_{13}$$

$$0 = (\lambda - 4)(-1)^{1+1} | \lambda = 2 | + 0C_{12} + 0C_{13}$$

$$0 = (\lambda - 4)[\lambda(\lambda - 1) - \lambda(3)]$$

$$0 = (\lambda - 4)[\lambda^{2} - \lambda - 6]$$

$$0 = (\lambda - 4)(\lambda - 3)(\lambda + 2)$$

$$| \lambda - 4 = 0 | \lambda - 3 = 0 | \lambda + 2 = 0$$

$$| \lambda = 4 | \lambda = 3 | \lambda = -2$$

Question 2.  $\S 2.1 \# 23 \ (3 \ marks)$  Evaluate  $\det(A)$  by a cofactor expansion along a row or column of your choice.

$$A = \begin{bmatrix} 1 & k & k^{2} \\ 1 & k & k^{2} \\ 1 & k & k^{2} \end{bmatrix} \qquad \text{det}(A) = \alpha_{11} C_{11} + \alpha_{12} C_{12} + \alpha_{13} C_{13}$$

$$= |(-1)^{1+1} | K K^{2} | + K(-1)^{1+2} | 1 K^{2} | + K^{2}(-1)^{1+3} | 1 K |$$

$$= |(1) [K(K^{2}) - K^{2}(K)] + (-1)(K) [I(K^{2}) - I(K^{3})]$$

$$+ K^{2}[I(K) - I(K)] = |[0] - K[0] + K^{2}[0]$$

$$= 0$$

Question 3. §2.1 #31 (2 marks) Evaluate the determinant of the given matrix by inspection.

$$\begin{bmatrix} 1 & 2 & 7 & -3 \\ 0 & 1 & -4 & 1 \\ 0 & 0 & 2 & 7 \\ 0 & 0 & 0 & 3 \end{bmatrix} = A$$
 det  $(A) = 1(1)(2)(3) = 6$