Name:

## Test 1

This test is graded out of 40 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

## Question 1.

a. (6 marks) Solve the following system by Gauss-Jordan elimination:

|            |   | у  | _ | z          | + | W  | _ | v | = | 3 |
|------------|---|----|---|------------|---|----|---|---|---|---|
| 2x         | _ | 3у | + | 4z         | _ | 4w | + | v | = | 2 |
| 3 <i>x</i> | _ | 3y | + | 4 <i>z</i> | _ | 4w | + | v | = | 2 |

b. (1 mark) Find two particular solutions to the above system.

Question 2. Consider the matrices:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 2 & -5 & 2 \\ -3 & 2 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 \\ 5 & 0 \end{bmatrix}, D = \begin{bmatrix} -1 & 1 \\ 4 & -3 \end{bmatrix}, E = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

a. (2 marks) Evaluate if possible, justify.

 $trace(C)A - trace(D)B^{T}$ 

b. (2 marks) Evaluate if possible, justify.

EA

c. (2 marks) Evaluate if possible, justify.

(AC)E

e. (4 marks) Solve for X if possible.

 $CXD = 10I_2$ 

•

Question 3. (5 marks) Solve for X given that it satisfies

$$\left(2A + X^T\right)^{-1} = I$$
  
where  $A = \begin{bmatrix} 1 & 3\\ 1 & 2 \end{bmatrix}$ .

**Question 4.** (2 marks) Let A and B be matrices such that AB is defined. Show that if the first and second columns of B are equal then so are the first and second columns of AB.

Question 5. (3 marks) Given an  $n \times n$  matrix A such that p(A) = 0 where  $p(x) = x^3 - x^2 + 1$ . Determine the inverse of A in terms of A.

**Question 6.** Consider the following augmented matrix in which \* denotes an arbitrary number and  $\blacksquare$  denotes a nonzero number. Determine whether the system of the given augmented matrix is consistent. If consistent, is the solution unique?



Question 7. (3 marks) Given that A, H and M are invertible matrices simplify the following expression.

$$(AM^{-1})^{-1}(A^2)^T (H^T A^T (A^{-1})^T)^T$$

Question 8. Consider the following system:

a. (1 mark) Write the above system as a matrix equation.

b. (2 marks) Solve the matrix equation by using the inverse of the coefficient matrix.

c. (2 marks) Give a geometrical interpretation of the solution set.

Question 9. (1 mark) True or False: a system with more unknowns than equations has at least one solution.

**Bonus Question.** (3 marks) Prove: If *c* is a scalar and *A* is an  $n \times n$  matrix then  $tr(cA^T) = ctr(A)$ .