Dawson	College:	Linear	Algebra:	201-NY	C-05-	S04:	Fall 2	2017
---------------	----------	--------	----------	--------	-------	------	--------	------

Name:		

Test 1

This test is graded out of 38 marks. No books, notes, watches or cell phones are allowed. You are only permitted to use the Sharp EL-531XG or Sharp EL-531X calculator. Give the work in full; – unless otherwise stated, reduce each answer to its simplest, exact form; – and write and arrange your exercise in a legible and orderly manner. If you need more space for your answer use the back of the page.

Question 1. Given

$$M = \begin{bmatrix} 1 & 2 & 2 & -1 & 3 & 1 \\ 0 & 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

where M is in row echelon form.

- a. (3 marks) Find the reduced row echelon form of M.
- b. (2 marks) Find 2 different row echelon form of M.
- c. (3 marks) Find the solution set of the system of linear equations whose augmented matrix is M by using back substitution.
- d. (2 marks) Find two particular solution of the system of linear equations whose augmented matrix is M.
- e. (2 marks) Find the solution set of the homogeneous system of linear equations whose coefficient matrix is M.
- f. (2 marks) Find a particular solution the homogeneous system of linear equations whose coefficient matrix is M when the solution of the first variable is equal to 1.

Question 2. Consider the matrices:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 2 & -5 & 2 \\ -3 & 2 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 \\ 5 & 0 \end{bmatrix}, D = \begin{bmatrix} -1 & 1 \\ 4 & -3 \end{bmatrix}, E = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, F = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \\ 0 & -5 & -1 \end{bmatrix}$$

Evaluate the following if possible, justify.

a. $(2 marks) trace(D)F^2$

b. $(2 \text{ marks}) (F - AB)^T$

c. (2 marks) trace(F)FB

Question 3.(2 marks) Write the 3×2 matrix $B = [b_{ij}]$ whose entries satisfy

$$b_{ij} = \left\{ \begin{array}{ll} 1 & \text{if} \quad |i-j| \geq 1, \\ i+j & \text{if} \quad |i-j| < 1. \end{array} \right.$$

Question 5. Determine whether the following statements are true or false for any $n \times n$ matrices A and B . If the statement is false provide counterexample. If the statement is true provide a proof of the statement.
a. (3 marks) If $A^3 = 0$ then $A^2 - A + I$ is invertible. (Hint: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$.)
b. (3 marks) All elementary matrices are symmetric.

Question 6. (3 marks) Let A and B be $n \times n$ matrices. Prove or disprove: If $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ have only the trivial solution then $(AB)\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Question 7. Given the following system
$$\begin{cases} 2x = a \\ 3x + 4y = b \\ 5x + 7y + 11z = c \end{cases}$$

- a. (5 marks) Find the inverse of the coefficient matrix.
- b. (2 marks) Express the inverse of the coefficient matrix as a product of elementary matrices, if possible. (Only the final answer will be graded.)
- c. (2 marks) For what value(s), if any, of a,b,c is the system consistent, justify.
- d. (2 marks) Solve the system using the inverse for the value(s), if any, found in part b.