Name: 1. Lamontagne

Ouiz 10

This quiz is graded out of 12 marks. No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1.

a. (2 marks) Find a homogeneous linear system of two equations in three unknowns whose solution space consists of those vectors in \mathbb{R}^3 that are orthogonal to $\mathbf{a} = (-3, 2, -1)$ and $\mathbf{b} = (0, -2, -2)$.

b. (1 mark) What kind of geometric object is the solution space?

The colution space is a line since the two equation are two non-parallel c. (2 marks) Find a general solution of the system obtained in part a. planes that intersect at a line. $\begin{bmatrix}
-3 & 2 & -1 & 0 \\
0 & -2 & -2 & 0
\end{bmatrix}$ $\begin{bmatrix}
-3 & 2 & -1 & 0 \\
0 & -2 & -2 & 0
\end{bmatrix}$ $\begin{bmatrix}
-3 & 2 & -1 & 0 \\
0 & -2 & -2 & 0
\end{bmatrix}$ $\begin{bmatrix}
-3 & 2 & -1 & 0 \\
0 & -2 & -2 & 0
\end{bmatrix}$ $\begin{bmatrix}
-3 & 2 & -1 & 0 \\
0 & -2 & -2 & 0
\end{bmatrix}$ $\begin{bmatrix}
-3 & 2 & -1 & 0 \\
0 & -2 & -2 & 0
\end{bmatrix}$ $\begin{bmatrix}
-3 & 2 & -1 & 0 \\
0 & -2 & -2 & 0
\end{bmatrix}$ $\begin{bmatrix}
-3 & 2 & -1 & 0 \\
0 & -2 & -2 & 0
\end{bmatrix}$ $\begin{bmatrix}
-3 & 2 & -1 & 0 \\
0 & -2 & -2 & 0
\end{bmatrix}$ $\begin{bmatrix}
-1 & 2 & -1 & 0 \\
0 & -2 & -2 & 0
\end{bmatrix}$ Let z=t then x=-t (x,y,z)=(-t,-t,t)=t(-1,-1,1) $t \in \mathbb{R}$

Question 2. (4 marks) Find the point of intersection of the line (x, y, z) = (9, -1, 3) + t(5, 1, 1) where $t \in \mathbb{R}$ with the plane containing both the y-axis and the z-axis.

If the plane contains the y-axis and z-axis then it is orthogenal to the x-axis and contains the origin of X=0 is the equation the plane.

(x,y,z) = (9+5t,-1+t,3+t)Hence intersection with the plane when x=0

o's point of intersection is (x, y, z) = (4, -1, 3) - = (5, 1, 1) = (0, 惧, 至)

Question 3. (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

The general solution of the nonhomogeneous linear system $A\mathbf{x} = \mathbf{b}$ can be obtained by adding \mathbf{b} to the general solution of the homogeneous linear system Ax = 0.

False, [1 1] [x] = [1] its homogeneous system is Ax=0 and only has the trivial solution since A is invertible.

A X b 1.2. X=0But x=0+b=(1,1) is not a solution of Ax=b

¹John Abbott Final Examination