Dawson (College:	Linear	Algebra (SCIENCE	. 201	-NYC-0	5-S2·	Fall 2018
Dawson	conege.	Lincar	zigenia (DCILITEE,	<i>)</i> . 201	11100.	02.	1 an 2010

Name:		

Quiz 14

This quiz is graded out of 16 marks. No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (4 marks) Given that \mathbf{u} , \mathbf{v} and \mathbf{w} are three linearly independent vectors in \mathbb{R}^n . For which value(s) of k will the vectors $\mathbf{u} + 2\mathbf{v}$, $\mathbf{v} + 3\mathbf{w}$ and $k\mathbf{u} + \mathbf{w}$ be linearly dependent?

Question 2. Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

a. (4 marks) If $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_{k-1}$.

b. (3 marks) The set of 2×2 matrices that contain exactly two 1's and two 0's is a linearly independent set in $\mathcal{M}_{2\times 2}$.

¹from a John Abbott Final Examination

Question 3.² (1 mark each)

- I. Let $\{u_1, u_2, u_3\}$ be a linearly dependent set of vectors. Select the best statement.
 - A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly dependent set of vectors.
 - B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly independent set of vectors.
 - C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
 - D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is a linearly independent set of vectors unless \mathbf{u}_4 is a linear combination of other vectors in the set.
 - E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is a linearly independent set of vectors unless $\mathbf{u}_4 = \mathbf{0}$.
 - F. none of the above
- II. Let $\{u_1, u_2, u_3\}$ be a linearly independent set of vectors.

Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is also a linearly independent set of vectors unless $\mathbf{u}_4 = \mathbf{0}$.
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is also a linearly independent set of vectors unless \mathbf{u}_4 is a scalar multiple another vector in the set.
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly independent set of vectors.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly dependent set of vectors.
- F. none of the above
- III. Let \mathbf{u}_4 be a linear combination of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is never a linearly dependent set of vectors.
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly independent set of vectors.
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is never a linearly independent set of vectors.
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ could be a linearly dependent or linearly dependent set of vectors depending on the vector space chosen.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a linearly dependent set of vectors unless one of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is the zero vector.
- F. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ could be a linearly dependent or linearly dependent set of vectors depending on the vectors chosen.
- G. none of the above
- IV. Assume \mathbf{u}_4 is not a linear combination of $\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$.

Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly dependent set of vectors.
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is a linearly independent set of vectors unless one of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is the zero vector.
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ could be a linearly independent or linearly dependent set of vectors depending on the vector space chosen.
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is a linearly dependent set precisely when $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a linearly dependent set.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is never a linearly dependent set of vectors.
- F. none of the above

V. Let
$$\mathbf{u} = \begin{bmatrix} 4 \\ 4 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 4 \\ 1 \\ -2 \end{bmatrix}$.

We want to determine by inspection (with minimal computation) if $\{u, v, w\}$ is linearly dependent or independent.

Choose the best answer.

- A. The set is linearly independent because we only have two vectors and they are not scalar multiples of each other.
- B. The set is linearly dependent because two of the vectors are the same.
- C. The set is linearly dependent because one of the vectors is a scalar multiple of another vector.
- D. The set is linearly dependent because one of the vectors is the zero vector.
- E. The set is linearly dependent because the number of vectors in the set is greater than the dimension of the vector space.
- F. We cannot easily tell if the set is linearly dependent or linearly independent.

²from WeBWorK