Quiz 14

This quiz is graded out of 12 marks. No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (4 marks) Given that \mathbf{u} , \mathbf{v} and \mathbf{w} are three linearly independent vectors in \mathbf{w} . For which value(s) of k will the vectors $\mathbf{u} + 2\mathbf{v}$, $\mathbf{v} + 3\mathbf{w}$ and $k\mathbf{u} + \mathbf{w}$ be linearly dependent?

Question 2. Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

a. (4 marks) If vi...., v_n are linearly dependent nonzero vectors, then at least one vector v_k is a unique linear combination of v₁...., v_{k-1}.

True, the subsets of S of the form S={V₁,...,V_i} are either linearly independent or linearly dependent. Let K be the smallest value for which S_R is linearly dependent. This implies ∃C_i to and C_K to s.t. C_i V_i + ... + C_K V_{K-1} + C_K V_K = C.8 (note C_K must be \$0 or elec it would imply that S_K, is linearly dependent). From we obtain V_K = C_i V_i - ... - C_{K-1} V_K. Now suppose that V_K does not have a unique linear combination of V_i,..., V_{K-1}. Then V_K = a₁c₁ + ... + a_i, v_i + ... a_i, v_k, and V_K = d_iv_j + ... + d_i

¹ from a John Abbott Final Examination

Question 3.² (1 mark each)

I. Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be a linearly dependent set of vectors.

Select the best statement.

- $-(A.)\{u_1,u_2,u_3,u_4\}$ is always a linearly dependent set of vectors.
- B. $\{u_1, u_2, u_3, u_4\}$ is always a linearly independent set of vectors.
- C. $\{u_1, u_2, u_3, u_4\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- D. $\{u_1, u_2, u_3, u_4\}$ is a linearly independent set of vectors unless u_4 is a linear combination of other vectors in the set.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is a linearly independent set of vectors unless $\mathbf{u}_4 = \mathbf{0}$.
- F. none of the above
- II. Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be a linearly independent set of vectors.

Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is also a linearly independent set of vectors unless $\mathbf{u}_4 = \mathbf{0}$.
- $-(B)\{u_1,u_2,u_3,u_4\}$ could be a linearly independent or linearly dependent set of vectors depending on the vectors chosen.
- C. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is also a linearly independent set of vectors unless \mathbf{u}_4 is a scalar multiple another vector in the set.
- D. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly independent set of vectors.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly dependent set of vectors.
- F. none of the above
- III. Let \mathbf{u}_4 be a linear combination of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is never a linearly dependent set of vectors.
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly independent set of vectors.
- $-(C.)\{u_1, u_2, u_3, u_4\}$ is never a linearly independent set of vectors.
- D. {u₁, u₂, u₃} could be a linearly dependent or linearly dependent set of vectors depending on the vector space chosen.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a linearly dependent set of vectors unless one of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is the zero vector.
- F. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ could be a linearly dependent or linearly dependent set of vectors depending on the vectors chosen.
- G. none of the above
- IV. Assume \mathbf{u}_4 is not a linear combination of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

Select the best statement.

- A. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is always a linearly dependent set of vectors.
- B. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is a linearly independent set of vectors unless one of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is the zero vector.
- C. {u₁, u₂, u₃, u₄} could be a linearly independent or linearly dependent set of vectors depending on the vector space chosen.
- $-(D)\{u_1, u_2, u_3, u_4\}$ is a linearly dependent set precisely when $\{u_1, u_2, u_3\}$ is a linearly dependent set.
- E. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ is never a linearly dependent set of vectors.
- F. none of the above

V. Let
$$\mathbf{u} = \begin{bmatrix} 4 \\ 4 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 4 \\ 1 \\ -2 \end{bmatrix}$.

We want to determine by inspection (with minimal computation) if $\{u, v, w\}$ is linearly dependent or independent.

Choose the best answer.

- A. The set is linearly independent because we only have two vectors and they are not scalar multiples of each other.
- B. The set is linearly dependent because two of the vectors are the same.
- C. The set is linearly dependent because one of the vectors is a scalar multiple of another vector.
- -D. The set is linearly dependent because one of the vectors is the zero vector.
- E. The set is linearly dependent because the number of vectors in the set is greater than the dimension of the vector space.
- F. We cannot easily tell if the set is linearly dependent or linearly independent.