Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S2: Fall 2018

Name: Y. Lamoutagne

Ouiz 2

This quiz is graded out of 11 marks. No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. Given

where M is in row echelon form.

- a. (3 marks) Find the reduced row echelon form of M.
- b. (I mark) Find two different row echelon form of M.
- c. (3 marks) Find the solution set of the system of linear equations whose augmented matrix is M by using back substitution.
- d. (1 mark) Find two particular solution of the system of linear equations whose augmented matrix is M.
- e. (2 marks) Find the solution set of the homogeneous system of linear equations whose coefficient matrix is M.
- f. (1 marks) Find a particular solution the homogeneous system of linear equations whose coefficient matrix is M when the solution of the first variable is equal to 1.

b) Mand R

c) Let x2=5, x4=t where s, t & R. Substitute in system

e) [M | 0] ~ ... ~ [1 2 0 -3 0 -2 0]
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0

Let
$$X_1 = 5$$
, $X_4 = t$, $X_6 = r$ where $s, t, r \in \mathbb{R}$. Substitute in system
$$\begin{cases}
X_1 + 25 & -3t & -2r = 0 \\
X_3 + t & = 0 \\
X_5 + r = 0
\end{cases}$$

$$\begin{cases}
X_1 = 2r + 3t - 25 \\
X_5 = -r
\end{cases}$$

$$\begin{cases}
X_1 = x + 3t - 25 \\
X_5 = -r
\end{cases}$$

$$\begin{cases}
X_1 = x + 3t - 25 \\
X_5 = -r
\end{cases}$$

$$\begin{cases}
X_1 = x + 3t - 25 \\
X_5 = -r
\end{cases}$$

$$\begin{cases}
X_1 = x + 3t - 25 \\
X_5 = -r
\end{cases}$$

$$\begin{cases}
X_1 = x + 3t - 25 \\
X_5 = -r
\end{cases}$$

$$\begin{cases}
X_1 = x + 3t - 25 \\
X_5 = -r
\end{cases}$$

$$\begin{cases}
X_1 = x + 3t - 25 \\
X_5 = -r
\end{cases}$$

$$\begin{cases}
X_1 = x + 3t - 25 \\
X_5 = -r
\end{cases}$$

$$\begin{cases}
X_1 = x + 3t - 25 \\
X_5 = -r
\end{cases}$$

° (x1, x2, X3, X4, X5, X6)= (2r+3t-25, 5, -t, t, -r, r) where s.r. t & R.

$$1 = x_1$$

 $1 = 2r + 3t - 25$
Let $r = \frac{1}{2}$, $t = 5 = 0$ then

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (1,0,0,0,0,\frac{1}{2},\frac{1}{2})$$

substitute 3 into 2 $x_3 + t + 2(1) = 2$ $x_3 = -t$ substitute 3, 4 into 0 $x_1 + 2 + 2(-t) - t + 3(1) = 1$

 $x_1 = -2 + 3t - 25$ $(x_1, x_2, x_3, x_4, x_6)$ = (-2+3t-25, 5,-t, t, 1)

d) $s=t=0:(x_1,X_2,X_3,X_4,X_5)$ = (-2,0,0,0,1) $(x_1, x_2, x_3, x_4, x_5)$ = (-4, 1, 0, 0, 1)