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Quiz 5
This quiz is graded out of 15 marks. No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is
worth 1 mark the remaining marks'are given for the work. If you need more space for your answer use the back of the page.

Question 1. (3 marks) Prove that if A is an invertible matrix and B is row equivalent to A, then B is also invertible.
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Question 2. (5 marks) Let Ax = 0 be a homogeneous system of n linear equations in n unknowns, and let Q be an invertible n X n matrix. Prove
that Ax = 0 has only the trivial solution if and only if (QA)x = 0 has only the trivial solution.
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Question 3. (3 marks) We showed in class that the product of symmetric matrices is symmejfic if and only if the matrices commute. Is the

product of commuting skew-symmetric and symmetric matrices skew-symmetric? Explain. .
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Question 4. Determine whether the following statements are true or false for any # x n matrix A. If the statement is false providé€ a counterexample.

If the statement is true provide a proof of the statement. 4
a. (2 marks) If A? is a symmetric matrix, then A is a symmetric matrix. . -
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b. (2 marks) Elementary matrices are not row equivalent to the identity.
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