Dawson (allege.	Linear	Algebra	(SCIENCE):	201-NYC	-05-S2· F	all 2018
Dawson (Junege.	Lincar	Aigebra	(SCIENCE).	201-IN I C	-05-52. 1	an 2016

Name:		

Quiz 9

This quiz is graded out of 13 marks. No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (5 marks) Let \vec{u} and \vec{v} be nonzero vectors in \mathbb{R}^2 or \mathbb{R}^3 , and let $k = ||\vec{u}||$ and $l = ||\vec{v}||$. Prove that the vector $\vec{w} = l\vec{u} + k\vec{v}$ bisects the angle between \vec{u} and \vec{v} .

Question 2. Given the following points: A = (3, 1, 1, 1), B = (2, 1, 3, 0), and C = (1, 0, 3, 1).

a. (4 marks) Find the point on the line containing A and C that is closest to B.

b. (2 marks) Find the area of the triangle with vertices at points A, B, and C.

Question 3. (2 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

If the relationship $\operatorname{proj}_{\vec{a}}\vec{u} = \operatorname{proj}_{\vec{a}}\vec{v}$ holds some nonzero vector \vec{a} , then $\vec{u} = \vec{v}$.

¹modified from a John Abbott Final Examination