Question 1. Given $\mathcal{P}_1: 2x + y - 3z = 6$, $\mathcal{P}_2: -6x - 3y + 9z = -18$, $\mathcal{P}_3: x + y + z = 1$, $\mathcal{L}_1: \vec{x} = (1,0,1) + t(-4,-2,6)$, $\mathcal{L}_2: \vec{x} = (1,1,1) + s(2,1,-3)$, and $\mathcal{L}_3: \vec{x} = (1,1,1) + r(-2,-1,4)$ where $s,t,r \in \mathbb{R}$.

- a. (3 marks) Determine whether \mathcal{L}_1 and \mathcal{L}_2 are skew lines.
- b. (3 marks) Find the parametric equation of the plane that contains \mathcal{L}_1 and \mathcal{L}_2 .
- c. (3 marks) Find the intersection of \mathcal{L}_2 and \mathcal{P}_1 . What of significance can be said about the point of intersection and the point (1,1,1).

d. (3 marks) Find the intersection of \mathcal{P}_1 , \mathcal{P}_2 and \mathcal{P}_3 .

e. (3 marks) Find the smallest angle between \mathcal{L}_3 and \mathcal{P}_3 .

f. (3 marks) Find the intersection of $2x + y - 3z = \alpha$, $-6x - 3y + 9z = \beta$, and $x + y + z = \gamma$ for fixed values of α , β , and γ given that intersection passes throught the point $(\pi, \sqrt{2}, e)$.

Question 2. (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement. The general solution of the nonhomogeneous linear system $A\mathbf{x} = \mathbf{b}$ can be obtained by adding **b** to the general solution of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$.