
Dawson College: Fall 2019: Linear Algebra (SCIENCE): 201-NYC-05-S5: Quiz 11

No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. Question 1. (5 marks) Given the following lines which are all skew to each other:

here $t_1, t_2, t_3 \in \mathbb{R}$. Consider a line \mathcal{L}_4 that is parallel to \mathcal{L}_3 and intersects both \mathcal{L}_1 and \mathcal{L}_2 . Find the points of intersection of \mathcal{L}_4 with \mathcal{L}_1 and \mathcal{L}_4 with \mathcal{L}_2 .

name: _____

Question 2. (5 marks) Given the cone defined by the given vectors $\vec{u} = (2, 2, 4)$, $\vec{v} = (1, 2, 1)$ and $\vec{w} = (4, 1, 3)$. Find the volume of the cone. Note from the diagram that \vec{w} is not perpendicular to the base, that \vec{v} is positioned such that its tail is at the center of the circle and its tip lies on the circle, that \vec{u} is positioned such that the vector passes through the center of the circle while its tail and tip lie on the circle. (*Hint: the volume of a cone is equal to one third of the area of the base times the height.*)

Question 3. (4 marks) Show that in 3-space the distance d from a point P to the line L through points A and B can be expressed as $d = \frac{||\vec{AP} \times \vec{AB}||}{||\vec{AB}||}$

Question 4. (2 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement. If \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^3 , where \vec{u} is nonzero and $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$, then $\vec{v} = \vec{w}$.