Dawson College: Fall 2019: Linear Algebra (SCIENCE): 201-NYC-05-S5: Quiz 13 name:
Question 1. Let $V = \{(a, b, c) + s\vec{d_1} + t\vec{d_2} \mid s, t \in \mathbb{R}\}$ for fixed (a, b, c) , $\vec{d_1}$ and $\vec{d_2}$ in \mathbb{R}^3 . In addition, $\vec{d_1}$ and $\vec{d_2}$ are not parallel nor the zero vector.
a. (1 mark) Give a geometric description of V , include a sketch of V .
b. (5 marks) Show that V with the standard operations of \mathbb{R}^3 is a vector space if and only if $(a, b, c) = (0, 0, 0)$.
Question 2. (3 marks) Determine whether the following is a subspace of $F(-\infty,\infty)$: All functions f in $F(-\infty,\infty)$ for which $f(0)=1$.
Question 3. (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement. Two subsets of a vector space V that span the same subspace of V must be equal.

Question 4. (2 marks) Is the relation 'is a subspace of' transitive? That is, if V is a subspace of W and W is a subspace of X, must V be a subspace of X?

Question 5. (1 mark) Let \mathbf{u}_4 be a vector that is not a linear combination of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \}$. Select the best statement.

- 1. There is no obvious relationship between span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ and span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$.
- 2. span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} = \text{span} \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}.$
- 3. We only know that span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\} \subseteq \text{span} \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.
- 4. span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ when none of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a linear combination of the others.
- 5. We only know that span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} \subseteq \operatorname{span} \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$.
- 6. span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a proper subset of span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$.
- 7. none of the above

Question 6.(1 mark)

Assume $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ spans \mathbb{R}^3 .

Select the best statement.

- 1. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is the zero vector.
- 2. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ always spans \mathbb{R}^3 .
- 3. There is no easy way to determine if $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 .
- 4. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is a scalar multiple of another vector in the set.
- 5. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ never spans \mathbb{R}^3 .
- 6. none of the above

Question 7.(1 mark)

Assume $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ does not span \mathbb{R}^3 .

Select the best statement.

- 1. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ may, but does not have to, span \mathbb{R}^3 .
- 2. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is a scalar multiple of another vector in the set.
- 3. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^3 unless \mathbf{u}_4 is the zero vector.
- 4. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ never spans \mathbb{R}^3 .
- 5. $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ always spans \mathbb{R}^3 .
- 6. none of the above