Dawson College: Fall 2019: Linear Algebra (SCIENCE): 201-NYC-05-S5: Quiz 14 name:
Question 1.(4 marks each) Determine whether the following statement is true or false. If the statement is false provide a countercample. If the statement is true provide a proof of the statement. Show all your work! a. There is a basis for M_{22} consisting of invertible matrices.
b. If A has size $n \times n$ and $I_n, A, A^2, \dots, A^{n^2}$ are distinct matrices, then $\{I_n, A, A^2, \dots, A^{n^2}\}$ is a linearly dependent set.
c. There are only three distinct two-dimensional subspaces of P_2 .

d. Every linearly independent subset of a vector space V is a basis for V.