Question 2.¹ (6 marks) Consider the following system:

2x	+	3y	+	4z	=	3
2x	+	(h+1)y	+	6z	=	4
4x	+	6y	+	(h - 4)z	=	k-1

Find all value(s) of h and k, if possible, such that the system has: a unique solution, infinitely many solutions, no solution. Be very clear about your combinations of h and k in each case and justify!

Question 2. (2 marks) Discuss the relative positions of the lines ax + by = 0, cx + dy = 0, and ex + fy = 0 when the system composed of the three lines has only the trivial solution and when it has nontrivial solutions.

Question 3. Determine whether the following statements are true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

- a. (2 marks) If an elementary row operation is applied to a matrix that is in row echelon form, the resulting matrix will still be in row echelon form.
- b. (2 marks) Every matrix has a unique row echelon form.

c. (2 marks) If a linear system has more unknowns than equations, then it must have infinitely many solutions.

 $^{^1\}mathrm{From}$ a previous John Abbott final examination