Question 1.¹ (1 mark each) Given $\mathcal{P}_1 : 2x + y - 3z = 6$, $\mathcal{P}_2 : -6x - 3y + 9z = 1$, $\mathcal{P}_3 : x + y + z = 1$, and $\mathcal{L}_1 : \vec{x} = (1, 0, 1) + t(-4, -2, 6)$ where $t \in \mathbb{R}$. Complete the following sentences with the word **perpendicular**, **parallel** or, **neither perpendicular nor parallel**, as appropriate. a. \mathcal{P}_1 and \mathcal{P}_2 are _______ to each other. b. \mathcal{P}_1 and \mathcal{P}_3 are _______ to each other. c. \mathcal{P}_1 and \mathcal{L}_1 are _______ to each other.

d. \mathcal{P}_3 and \mathcal{L}_1 are ______ to each other.

Question 2. Given the plane $\mathcal{P}: 3x + 2y + z = 6$.

a. (2 marks) Find the x, y and z intercept of \mathcal{P} and sketch \mathcal{P} , include the axes and their labels as shown in class.

b. (4 marks) Using projection(s) find the distance between the origin and \mathcal{P} .

c. (3 marks) Find the angle between \mathcal{P} and the xz-plane (the plane that contains the x and z axis).

 $^{^{1}}$ Inspired from John Abbott Final Examinations.

Question 3. (4 marks) Find the closest point on x - y = 0 to the point P(2, 3).

Question 4. Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

a. (2 marks) If \vec{a} and \vec{b} are orthogonal vectors, then for every nonzero vector \vec{u} , we have $\operatorname{proj}_{\vec{a}}(\operatorname{proj}_{\vec{b}}(\vec{u})) = \vec{0}$

b. (2 marks) If the relationship $\operatorname{proj}_{\vec{a}}(\vec{u}) = \operatorname{proj}_{\vec{a}}(\vec{v})$ holds for some nonzero vector \vec{a} , then $\vec{u} = \vec{v}$.