Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the

Question 1. (5 marks) Determine conditions on the b_i's, if any, in order to guarantee that the linear system is consistent. And discuss your result using the Equivalence Theorem.

$$\begin{cases} x_1 - 2x_2 - x_3 = b_1 \\ -4x_1 + 5x_2 + 2x_3 = b_2 \\ -4x_1 + 7x_2 + 4x_3 = b_3 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & -1 & b_1 \\ -4 & 5 & 2 & b_3 \\ -4 & 7 & 4 & b_3 \end{bmatrix}$$

.º system is consistent forall bi ER.

Quations 2. (1 mark) Create a symmetric matrix by substituting appropriate numbers for the x's.

Question 3. (4 marks) If B and C are $n \times n$ matrices such that $A = B^T C + C^T B$ is invertible then show A^{-1} is symmetric.

conclusion:

Alis symmetric

We want to show that $(A^{-1})^T = A^{-1}$

LHS =
$$(A^{-1})^T$$

= $(A^T)^{-1}$
= $((B^TC + C^TB)^T)^{-1}$
= $((B^TC)^T + (C^TB)^T)^{-1}$
= $(C^T(B^T)^T + B^T(C^T)^T)^{-1}$

$$\Rightarrow = (C^{\mathsf{T}}\mathcal{B} + \mathcal{B}^{\mathsf{T}}C)^{-1}$$

$$= (\mathcal{B}^{\mathsf{T}}C + C^{\mathsf{T}}\mathcal{B})^{-1}$$

$$= \mathcal{A}^{-1}$$

$$= \mathcal{R}\mathcal{H}\mathcal{S}.$$