Question 1. (3 marks) Find a vector of length 3 which is oppositely directed to $\overrightarrow{A B}$ where $A(1,5,-3)$ and $B(3,0,-2)$.
$\mathscr{A} \mathscr{A}=\underline{B}-\underline{A}=(3,0,-2)-(1,5,-3)=(2,-5,1)$

$$
\frac{-3}{\|A B\|}(2,-5,1)=\frac{-3}{\sqrt{2^{2}+(-5)^{2}+1^{2}}}(2,-5,1)=\frac{-3}{\sqrt{30}}(2,-5,1)
$$

Questions 2. Given $\vec{u}=(1,2,0)$ and $\vec{v}=(2,1,-1)$.
a. (3 marks) Find $\|\vec{a}\|$ where $\vec{a}=(\vec{u} \cdot \vec{v}) \vec{u}-2 \vec{v}$.
b. (3 marks) Find the angle in degrees between \vec{u} and \vec{v}.
a)

$$
\begin{aligned}
\underline{a} & =((1,2,0) \cdot(2,1, \cdot 1))(1,2,0)-2(2,1,-1) \\
& =(1.2+2(1)+0(1))(1,2,0)-2(2,1,-1) \\
& =(4)(1,2,3)-2(2,1,-1) \\
& =(4,8,12)-(4,2,-2) \\
& =(0,6,14)
\end{aligned}
$$

$\|\underline{a}\|=\|(0,6,14)\|=\sqrt{0^{2}+6^{2}+(14)^{2}}=\sqrt{36+196}=\sqrt{232}$
b) $\underline{u} \cdot \underline{v}=\|\underline{u}\|\|\underline{v}\| \cos \theta$
$(1,2,0) \cdot(2,1,-1)=\|(1,2,0))\|\prime(2,1,-1)\| \cos \theta$
$1(2)+2(1)+0(-1)=\sqrt{1^{2}+2^{2}+0^{2}} \sqrt{2^{2}+1^{2}+(-1)^{2}} \cos \theta$
$4=\sqrt{5} \sqrt{6} \cos \theta$
$\frac{4}{\sqrt{5} \sqrt{6}}=\cos \theta$
$0 \approx 43^{\circ}$

