Question 1. (4 marks) Given $\mathscr{P}_{1}: 6 x-3 y+6 z=-3$ and $\mathscr{P}_{2}: 4 x-2 y+4 z=2$. Determine whether $P(1,2,1)$ is between \mathscr{P}_{1} and \mathscr{P}_{2}.

Let P_{1} be a point on P_{1}, Let $x=2=0 \Rightarrow 6(0)-3 y+6(0)=-3$

$$
\therefore P_{1}(0,1,0)
$$

Let P_{2} be a point on P_{2}, Let $x=z=0 \Rightarrow 4(0)-2 y+4(c)=2$

$$
\therefore P_{2}(0,-1,0)
$$

$$
\begin{aligned}
& \vec{P}_{1} \vec{P}=\underline{P}-\underline{P}_{1}=(1,2,1)-(0,1,0)=(1,1,1) \\
& P_{2}^{-} p=\underline{P}-\underline{P}_{2}=(1,2,1)-(0,-1,0)=(1,3,1)
\end{aligned}
$$

$$
\begin{aligned}
& P_{1} \dot{P} \cdot n_{2}=(1,1,1) \cdot(4,-2,4)=6>0 \quad \therefore^{\circ} 0 \quad \alpha \text { is acute } \\
& P_{2} \vec{P} \cdot \underline{n}_{2}=(1,3,1) \cdot(4,-2,4)=2>0 \quad \therefore 0 \quad 0 \text { is acute }
\end{aligned}
$$

on P does not lie between P_{1} and P_{a}.

Question 2. Given $\mathscr{L}_{1}: \mathbf{x}=(1,2,1)+t(2,-1,1), t \in \mathbb{R}$ and $\mathscr{L}_{2}: \mathbf{x}=(3,3,3)+t(-4,2,-2), t \in \mathbb{R}$
a. (4 marks) Find the equation of the line that passes thought the point $(3,3,3)$ and intersect perpendicularly \mathscr{L}_{1}.

note: $\mathscr{L}_{1} \| \mathscr{L}_{2}$ since $d_{1} \| \underline{d}_{2}$ because $\underline{d}_{2}=-2 d_{1}$

$$
\left.\left.\begin{array}{rl}
\vec{P}_{2} \vec{P}_{1}=\underline{P}_{1}-P_{2} & =(1,2,))-(3,3,3) \\
\underset{\operatorname{proj}}{d_{2}} \vec{P}_{3} \vec{P}_{1} & =\frac{d_{2} \cdot P_{0} \vec{P}_{1}}{d_{2} \cdot d_{2}} \underline{d}_{2} \\
& =\frac{(-4,2,-2) \cdot(-2,-1,-2)}{(-4,2,-2) \cdot(-4,2,-2)}(-4,2,-2) \\
& =\frac{8-2+4}{16+4+4}(-4,2,-2)
\end{array}\right) \frac{10}{24}(-4,2,-2)\right)
$$

$$
\begin{aligned}
\operatorname{Perp}_{\partial_{3}} \stackrel{P}{P}_{2} P_{1} & =\vec{P}_{2} \vec{P}_{1}-p r e j_{d_{2}} P_{d} P_{1} \\
& =(-2,-1,-2)-\frac{5}{6}(-2,1,-1) \\
& =\left(\frac{-2}{6}, \frac{-11}{6}, \frac{-7}{6}\right)
\end{aligned}
$$

b. (2 marks) Find the parametric equation of the plane that contains \mathscr{L}_{1} and \mathscr{L}_{2}.

$$
\begin{aligned}
P: \underline{x} & =P_{0}+s d_{1}+t d_{2} \quad s, t \in \mathbb{R} \\
& =(3,3,3)+s(2,-1,1)+t \text { perp} P_{d} \overrightarrow{P_{2}} P_{1}
\end{aligned}
$$

Question 3. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

1. (3 marks) The general solution of the nonhomogeneous linear system $A \mathbf{x}=\mathbf{b}$ can be obtained by adding \mathbf{b} to the general solution of the homogeneous linear system $A \mathbf{x}=\mathbf{0}$.
False
$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ A\end{array}\right]=\left[\begin{array}{l}1 \\ A\end{array}\right]=\underline{x}$$\quad \begin{aligned} \text { has a vigique solution }(0,1) & \text { but the general solution of } A \underline{x}=\underline{0} \text { is } \\ & \text { the trivial solvicien since dot }(A) \neq 0 . \\ & \text { and }(0,0)+b=(0,0)+(1,1) \text { is not the } \\ & \text { solution set of } A x=b .\end{aligned}$

Question Bonus. (2 marks) A former Prime Minister of Canada defined a proof as
I don't know - a proof is a proof. What kind of a proof? It's a proof. A proof is a proof, and when you have a good proof, it's because it's proven.
In your own words correctly define proof.

