Question 1. (4 marks) Given the points $A(1,2,-1)$ and $B(1,1,2)$. Find the point C on the y-axis such that the area of the triangle $A B C$ is $\sqrt{10} / 2$.

$$
\text { Area }=\frac{\left\|A \vec{B} \times A^{\vec{C}}\right\|}{2}
$$

$$
\frac{\sqrt{10}}{2}=\frac{\|A \overrightarrow{A B} \times \overrightarrow{A C}\|}{2}
$$

$$
\sqrt{10}=\|A \overrightarrow{A B} \times \overrightarrow{A C}\|
$$

$$
\sqrt{10}=11(5-3 y,-3,-1) 11
$$

$$
\begin{array}{rlrl}
\overrightarrow{A C}=\underline{C}-\underline{A} & =(0, y, 0)-(1,2,-1) & & \sqrt{10}=\sqrt{(5-3 y)^{2}+(-3)^{2}+(-1)^{2}} \\
& =(-1, y-2,1) & \sqrt{10}=\sqrt{(5-34)^{2}+10}
\end{array}
$$

$$
\sqrt{10}=\sqrt{(5-3 y)^{2}+10}
$$

Question 2. (5 marks) Given the following lines which are all skew to each other:

$$
\begin{aligned}
& \mathscr{L}_{1}:(x, y, z)=(1,0,0)+t_{1}(1,2,0) \\
& \mathscr{L}_{2}:(x, y, z)=(1,1,0)+t_{2}(1,0,1) \\
& \mathscr{L}_{3}:(x, y, z)=(1,0,1) \\
& +t_{3}(1,2,3)
\end{aligned}
$$

here $t_{1}, t_{2}, t_{3} \in \mathbb{R}$. Consider a line \mathscr{L}_{4} that is parallel to \mathscr{L}_{3} and intersects both \mathscr{L}_{1} and \mathscr{L}_{2}. Find the points of intersection of \mathscr{L}_{4} with \mathscr{L}_{1} and \mathscr{L}_{4} with \mathscr{L}_{2}.

$$
\vec{P}_{1} P_{2}=(1,1,0)+t_{2}(1,0,1)-\left[(1,0,0)+t_{1}(1,2,0)\right]=\left(t_{2}-t_{1}, 1-2 t_{1}, t_{2}\right)
$$

$$
\left.\left.\downarrow \downarrow \mathscr{L}_{3} \downarrow \begin{array}{l}
k(1,2,3)=\left(t_{2}-t_{1}, 1-2 t_{1}, t_{2}\right) \\
-t_{1}+t_{2}-k=0 \\
-2 t_{1} \\
-2 k=-1 \\
t_{2}-3 k=0
\end{array}\right\} \begin{array}{cccc}
-1 & 1 & -1 & 0 \\
-2 & 0 & -2 & -1 \\
0 & 1 & -3 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& \sim_{-2 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cccc}
-1 & 1 & -1 & 0 \\
0 & -2 & 0 & -1 \\
0 & 1 & -3 & 0
\end{array}\right] \\
& \overbrace{-\frac{1}{2} R_{2}+R_{1} \rightarrow R_{1}}^{-\frac{1}{2} R_{2} \rightarrow R_{2}} \begin{array}{l}
\frac{1}{2} R_{2}+R_{3} \rightarrow R_{3}
\end{array}\left[\begin{array}{cccc}
-1 & 0 & -1 & -1 / 2 \\
0 & 1 & 0 & 1 / 2 \\
0 & 0 & -3 & -\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

$$
\sim \begin{aligned}
& -R_{1} \rightarrow R_{1} \\
& -\frac{1}{3} R_{3} \rightarrow R_{3}
\end{aligned}\left[\begin{array}{llll}
1 & 0 & 1 & 1 / 2 \\
0 & 1 & 0 & 1 / 2 \\
0 & 0 & 1 & 1 / 6
\end{array}\right]
$$

$$
\sim^{-R_{3}+R_{1} \rightarrow R_{1}}\left[\begin{array}{llll}
1 & 0 & 0 & 1 / 3 \\
0 & 1 & 0 & 1 / 2 \\
0 & 0 & 1 & 1 / 6
\end{array}\right]
$$

$$
t_{1}=1 / 3
$$

\therefore point of intersection between \mathscr{L}_{1}
and \mathscr{L}_{4}.

$$
\begin{aligned}
&(x, y, z)=(1,0,0)+1 / 3(1,2,0) \\
&=\left(\frac{4}{3}, \frac{2}{3}, 0\right) \\
& \text { between } \mathscr{L}_{2} \text { and } \mathcal{L}_{4} \\
&(x, y, z)=(1,1,0)+\frac{1}{2}(1,0,1) \\
&=\left(\frac{3}{2}, 1, \frac{1}{2}\right)
\end{aligned}
$$

$$
t_{2}=1 / 2
$$

$$
\begin{aligned}
& \xrightarrow[A(1,2,1) A_{A C}]{A B(1,1,2)} C(0, y, 0) \\
& \begin{aligned}
\overrightarrow{A B}=\underline{B}-\vec{A} & =(1,1,2)-(1,2,-1) \\
& =(0,-1,3)
\end{aligned} \\
& \begin{aligned}
\overrightarrow{A C}=\underline{C}-\underline{A} & =(0, y, 0)-(1,2,-1) \\
& =\left(-1, y^{-2}, 1\right)
\end{aligned} \\
& \stackrel{\rightharpoonup}{A B} \times \overrightarrow{A C}=\left(\left|\begin{array}{cc}
-1 & y-2 \\
3 & 1
\end{array}\right|,-\left|\begin{array}{cc}
0 & -1 \\
3 & 1
\end{array}\right|,\left|\begin{array}{cc}
0 & -1 \\
-1 & y-2
\end{array}\right|\right) \\
& \begin{array}{cc}
0 & -1 \\
-1 & y_{-2} \\
\hline
\end{array} \\
& =(5-3 y,-3,-1)
\end{aligned}
$$

Question 3. (3 marks) Given $\mathscr{L}_{1}: \mathbf{x}=(1,2,1)+t(2,-1,1), t \in \mathbb{R}$ and $\mathscr{L}_{2}: \mathbf{x}=(3,3,3)+t(-4,2,-2), t \in \mathbb{R}$. Find the general equation of the plane that contains \mathscr{L}_{1} and $\mathscr{L}_{2} . \quad \underline{d}_{1}=(2,-1,1), \quad P_{1} \vec{P}_{2}=\underline{P}_{-}-P_{1}=(3,3,3)-(1,2,1)=(2,1,2)$

$$
\begin{array}{rl}
\underline{n}=\operatorname{din}_{1} & \times P_{2}^{P} P_{2} \\
2 & = \\
-1 & 2 \\
1 & 2 \\
1 & =(-3,-2,4)
\end{array}
$$

$$
-3 x-2 y+4 z=d
$$

sub P_{1}

$$
\begin{array}{r}
P_{1}-3(1)-2(2)+4(1)=d \\
-3=d
\end{array}
$$

$$
\therefore-3 x-2 y+4 z=-3
$$

Question 4. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement. (3 marks) If \vec{u}, \vec{v} and \vec{w} are vectors in \mathbb{R}^{3}, where $\vec{u} \neq \overrightarrow{0}$ and $\vec{u} \times \vec{v}=\vec{u} \times \vec{w}$, then $\vec{v}=\vec{w}$.
False,
Lit $\underline{u}=(1,0,0), \underline{v}=2 \underline{u}, \underline{w}=3 \underline{u}$, then $\underline{u} \times \underline{v}=\underline{u} \times(2 \underline{u})=2(\underline{u} \times \underline{u})=2 \underline{0}=\underline{0}$

$$
\text { bot } \underline{v} \neq \underline{w}
$$

Question Bonus. (2 marks) Discuss and give a correct analysis of the following
Let $R\{x \mid x \notin x\}$, then $R \in R \leftrightarrow R \notin R$

