Question 1. Consider the set

$$V = \{(x, y) \mid x + y = 2\}$$

under the following operations:

$$(x_1, y_1) + (x_2, y_2) = (x_1 \cdot x_2, y_1 + y_2 - 1)$$
 $k \cdot (x, y) = (kx - k + 1, y^k)$

- a. (1 mark) Find $2 \cdot (3, -1)$.
- b. (3 marks) Show that V contains a zero vector (in the sense of a vector space).

c. (3 marks) Does V contain an additive inverse for $\vec{v} = (-1,3)$? If so, find it. Justify.

d. (2 marks) Is V with the given operations a vector space? Justify.

Question 2. (3 marks) If the statement is false provide a counterexample. If the statement is true provide a proof of the statement. There does not exist a vector space with two elements.

Bonus Question.

definition: A group G is a set of elements satisfying the four conditions below, relative to some binary operation.

- 1. $\exists e \in G \text{ s.t. } \forall g \in G : e \cdot g = g \cdot e = g. \text{ (Identity.)}$
- 2. $\forall x, y, z \in G : (x \cdot y) \cdot z = x \cdot (y \cdot z)$. (Associativity.)
- 3. $\forall x \in G, \exists y \in G \text{ s.t. } x \cdot y = y \cdot x = e. \text{ (Inverse.)}$
- 4. $\forall x, y \in G : x \cdot y \in G$. (Closure.)
- a. (2 marks) Show that the identity is unique.
- b. (2 marks) Is a vector space a group?

¹https://web.williams.edu/Mathematics/sjmiller/public_html/mathlab/public_html/handouts/GroupTheoryIntro.tex