Question 1. Consider the set

$$
V=\{(x, y) \mid x+y=2\}
$$

under the following operations:

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1} \cdot x_{2}, y_{1}+y_{2}-1\right) \quad k \cdot(x, y)=\left(k x-k+1, y^{k}\right)
$$

a. (1 mark) Find $2 \cdot(3,-1)$.

$$
2 \cdot(3,-1)=\left(2(3)-2+1,(-1)^{2}\right)=(5,1)
$$

b. (3 marks) Show that $V$ contains a zero vector (in the sense of a vector space).

Let $\underline{e}=(a, b)$ and $\underline{v}=(x, y) \in V$

$$
\begin{gathered}
\underline{v}+\underline{0}=\underline{v} \\
(x, y)+(a, b)=(x, y) \\
(x a, y+b-1)=(x, y) \\
x a=x \Rightarrow a=1 \\
y+b-1=y \Rightarrow b=1 \\
\therefore 0=(1,1) \in V \text { since } 1+1=2
\end{gathered}
$$

c. (3 marks) Does $V$ contain an additive inverse for $\vec{v}=(-1,3)$ ? If so, find it. Justify.

$$
\begin{gathered}
\underline{v}+\underline{w}=\underline{0} \\
(-1,3)+(x, y)=(1,1) \\
(-1 \cdot x, 3+y-1)=(1,1) \\
-x=1 \Longrightarrow x=-1 \\
3+y-1=1 \Rightarrow y=-1 \\
\underline{w}=(-1,-1) \notin V \text { since }(-1)+(-1) \neq 2
\end{gathered}
$$

d. (2 marks) Is $V$ with the given operations a vector space? Justify.
$V$ is not a vector space since axiom (5) fails because it does not contain $\underline{V}=(-1,3) \in V$ does not have an additive inverse in $U$.

Question 2. (3 marks) If the statement is false provide a counterexample. If the statement is true provide a proof of the statement. There does not exist a vector space with two elements.

True,
Suppose that $V=\{\underline{a}, b\}$ is a vector space. Since $V$ is a vector space then $\underline{o} \in V(W O L O G \underline{o}=\underline{a})$. Then $\underline{b} \neq \underline{0}$ and $\underline{b}+\underline{a}=\underline{b}$ since $\underline{a}=\underline{0} \therefore \underline{a}$ is not the additive inverse of $\underline{b}$. And $\underline{b}+\underline{b}=2 \underline{b} \neq \underline{0}$ by the 1.1 since $2 \neq 0$ and $\underline{b} \neq \underline{c}$. $\therefore \therefore \underline{b}$ does not have an additive inverse.
definition: ${ }^{1}$ A group $G$ is a set of elements satisfying the four conditions below, relative to some binary operation.

1. $\exists e \in G$ s.t. $\forall g \in G: e \cdot g=g \cdot e=g$. (Identity.)
2. $\forall x, y, z \in G:(x \cdot y) \cdot z=x \cdot(y \cdot z)$. (Associativity.)
3. $\forall x \in G, \exists y \in G$ s.t. $x \cdot y=y \cdot x=e$. (Inverse.)
4. $\forall x, y \in G: x \cdot y \in G$. (Closure.)
a. ( 2 marks) Show that the identity is unique.
b. (2 marks) Is a vector space a group?
[^0]
[^0]:    ${ }^{1}$ https://web.williams.edu/Mathematics/sjmiller/public_html/mathlab/public_html/handouts/GroupTheoryIntro.tex

