Question 1. (5 marks) Determine whether the following is a subspace of $\mathscr{M}_{n \times n}$: The set of all $n \times n$ matrices such that $A B=B A$ for some fixed $n \times n$ matrix B.
Let $W=\left\{A \mid A \in M_{n \times n}\right.$ and $\left.A B=B A\right\}$ where $B \in M_{\text {nan }}$
(1) Closure under addition:

Let $A_{1}, A_{2} \in W \Rightarrow A_{1} B=B A_{1}$ and $A_{2} B=B A_{2}$

$$
A_{1}+A_{2} \in W \text { since } \begin{aligned}
\left(A_{1}+A_{2}\right) B & =A_{1} B+A_{2} B \\
& =B A_{1}+B A_{2} \text { by } \\
& =B\left(A_{1}+A_{2}\right)
\end{aligned}
$$

\therefore closed vader addition.
(2) Closure under scalar multiplication

Let $k \in R$ and $A \in W \Rightarrow A B=B A$

$$
\begin{aligned}
k A \in W \text { since }(k A) B & =k A B \\
& =K B A \text { by } A a \\
& =B(k A)
\end{aligned}
$$

$0_{0}^{0} W$ is a subspace by the subspace test.
\therefore closed under scalar multiplication.
Question 2. (5 marks) Let V be the solution space of the equation $4 x-y+2 z=0$, and let W be the subspace of \mathbb{R}^{3} spanned by $(1,1,1)$. Find a vector \vec{v} in V and a vector \vec{w} in W for which $\vec{v}+\vec{w}=(1,0,1)$.
Lets determine which vectors span V Lat $y=s, z=t$

$$
\begin{array}{rlrl}
4 x-s+2 t & =0 & \therefore(x, y, z) & =\left(\frac{1}{4} s-\frac{1}{2} t, s, t\right) \\
4 x & =s-2 t & \therefore=\frac{1}{4} s-\frac{1}{2} t & \\
& =s\left(\frac{1}{4}, 1,0\right)+t\left(-\frac{1}{2}, 0,1\right) \\
& \in V
\end{array}
$$

$$
\therefore V=\operatorname{span}(\{(1,4,0),(1,0,-2)\})
$$

So lets solve $\underbrace{C_{1}(1,4,0)+C_{2}(1,0,-2)}+c_{3}(1,1,1)=(1,0,1)$

$$
E_{w}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
4 & 0 & 1 & 0 \\
0 & -2 & 1 & 1
\end{array}\right]} \\
& \sim-4 R_{1}+R_{2} \rightarrow R_{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -4 & -3 & -4 \\
0 & -2 & 1 & 1
\end{array}\right] \\
& \simeq R_{2} \leftrightarrow R_{3}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -2 & 1 & 1 \\
0 & -4 & -3 & -4
\end{array}\right] \\
& \begin{array}{l}
\left.\leadsto \begin{array}{l}
5 R_{1} \rightarrow R_{1} \\
\\
5 R_{2} \rightarrow R_{2}\left[\begin{array}{cccc}
5 & 5 & 5 & 5 \\
0 & -10 & 5 & 5 \\
0 & 0 & -5 & -6
\end{array}\right] \\
\\
\sim R_{3}+R_{1} \rightarrow R_{1}\left[\begin{array}{cccc}
5 & 5 & 0 & -1 \\
R_{3}+R_{2} \rightarrow R_{2} & -10 & 0 & -1 \\
0 & 0 & -5 & -6
\end{array}\right]
\end{array}\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \sim \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -2 & 1 & 1 \\
0 & 0 & -5 & -6
\end{array}\right] \sim \sim R_{2}+R_{1} \rightarrow R_{1}\left[\begin{array}{cccc}
10 & 0 & 0 & -3 \\
0 & -10 & 0 & -1 \\
0 & 0 & -5 & -6
\end{array}\right] /
\end{aligned}
$$

