Question 1. ${ }^{1}$ (5 marks) Given that A and B are invertible with $B=B^{T}$, solve for matrix X, if possible. Your answer should be expressed as a single term.

$$
\begin{aligned}
B^{T} A X-A & =(B-I)(B+I) A \\
B A X & =\left[B^{2}-B+B-I\right] A+A \\
B A X & =\left[B^{2}-I\right] A+A \\
B A X & =B^{2} A-A+A \\
B A X & =B^{2} A \\
(B A)^{-1}(B A) X & =\left(B A A^{-1} B^{2} A\right. \\
I X & =A^{-1} B^{-1} B B A \\
X & =A^{-1} I B A \\
X & =A^{-1} B A
\end{aligned}
$$

Question 2. Determine whether the following statements are true or false for any $n \times n$ matrices A and B. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

1. (3 marks) The sum of two invertible matrices of the same size must be invertible.

False.

$$
\text { let } A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \text {, they are both invertible matrices since ad- bc } \neq 0
$$

$$
\text { But } A+B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { which is not invertible. }
$$

2. (3 marks) A square matrix A is idempotent if $A^{2}=A$. If A is idempotent then A is singular or $A=I$. Hint: Its true! And prove it by contradiction.
premise:

$$
A^{2}=A
$$

conclusion

$$
{ }^{n} \text { is singular or } A=I
$$

Lets prove by contradiction, suppose A is invertible and $A \neq I$.

$$
\begin{aligned}
A^{2} & =A \\
A A & =A \\
A^{-1} A A & =A^{-1} A \\
J A & =I \quad y \text { since } A \neq I \\
A & =I \quad q
\end{aligned}
$$

$\therefore A$ is singular or $A=I$

[^0]
[^0]: ${ }^{1}$ from a past John Abbott final examination

