Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S7: Fall 2022: Quiz 6

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (4 marks) Let A be an $n \times m$ matrix, such that $A^T A = I_m$. Show that $I_n - 2AA^T$ is its own inverse and symmetric.

name: _

$$I_{n} - 2AA^{T} \text{ is its own inverse iff} (I_{n} - 2AA^{T})(I_{n} - 2AA^{T}) = I_{n}$$

$$(I_{n} - 2AA^{T})(I_{n} - 2AA^{T}) = I_{n}I_{n} - I_{n}(2AA^{T}) + -2AA^{T}I_{n} + (2AA^{T})(2AA^{T})$$

$$= I_{n} - 4AA^{T} + 4AA^{T}AA^{T}$$

$$= I_{n} - 4AA^{T} + 4AI_{m}A^{T}$$

$$= I_{n} - 4AA^{T} + 4AA^{T}$$

$$= I_{n}$$

$$I_{n} - 2AA^{T} \text{ is symmetric iff} (I_{n} - 2AA^{T})^{T} = I_{n} - 2AA^{T}$$

$$(I_{n} - 2AA^{T})^{T} = I_{n}^{T} - (2AA^{T})^{T}$$

$$I_n - 2AA^T)' = I_n - (2AA^T)^T$$

= $I_n - 2(AA^T)^T$
= $I_n - 2(A^T)^TA^T$
= $I_n - 2AA^T$

Question 2. (2 marks) If (1,2,3,4,5) and (4,0,4,3,1) are both solutions of a system of 13 linear equations find a third solution of the system. X_{1}

as shown in class if \underline{x}_i and \underline{x}_2 are solutions of a linear system then so is $\underline{x} = \underline{x}_i + k(\underline{x}_2 - \underline{x}_i)$ $\forall k \in \mathbb{R}$.

$$c_{0}^{\circ} = X_{1} + 2(X_{2} - X_{1})$$

=-X_{1} + 2X_{2}
= (7, -2, 5, 2, -3) is an other solution of the system.

Question 3. Determine whether the following statements are true or false for any $n \times n$ matrices A and B. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

1. (3 marks) If A and B are square matrices such that AB can be expressed as a product of elementary matrices, then the system $A\mathbf{x} = \mathbf{b}$ has exactly one solution.

Trve,