Question 1. (4 marks) Let A be an $n \times m$ matrix, such that $A^{T} A=I_{m}$. Show that $I_{n}-2 A A^{T}$ is its own inverse and symmetric.

$$
\begin{aligned}
& I_{n}-2 A A^{\top} \text { is its own inverse tiff } \quad\left(I_{n}-2 A A^{\top}\right)\left(I_{n}-2 A A^{\top}\right)=I_{n} \\
& \begin{aligned}
\left(I_{n}-2 A A^{\top}\right)\left(I_{n}-2 A A^{\top}\right) & =I_{n} I_{n}-I_{n}\left(2 A A^{\top}\right)+-2 A A^{\top} I_{n}+\left(2 A A^{\top}\right)\left(2 A A^{\top}\right) \\
& =I_{n}-4 A A^{\top}+4 A A^{\top} A A^{\top} \\
& =I_{n}-4 A A^{\top}+4 A I_{m} A^{\top} \\
& =I_{n}-4 A A^{\top}+4 A A^{\top} \\
& =I_{n}
\end{aligned}
\end{aligned}
$$

$I_{n}-2 A A^{\top}$ is symmetric ifs $\left(I_{n}-2 A A^{\top}\right)^{\top}=I_{n}-2 A A^{\top}$

$$
\begin{aligned}
\left(I_{n}-2 A A^{\top}\right)^{\top} & =I_{n}^{\top}-\left(2 A A^{\top}\right)^{\top} \\
& =I_{n}-2\left(A A^{\top}\right)^{\top} \\
& =I_{n}-2\left(A^{\top}\right)^{\top} A^{\top} \\
& =I_{n}-2 A A^{\top}
\end{aligned}
$$

Question 2. (2 marks) If $\underbrace{(1,2,3,4,5})$ and $(\underbrace{4,0,4,3,1)}$ are both solutions of a system of 13 linear equations find a third solution of the system.
d_{s} shown in class if \underline{x}_{1} and \underline{x}_{2} are solutions of a linear system then so is $\underline{x}=\underline{x}_{1}+k\left(\underline{x}_{2}-\underline{x}_{1}\right)$ $\forall k \in \mathbb{R}$.

$$
\begin{aligned}
\therefore \therefore \underline{x}_{3} & =\underline{x_{1}}+2\left(\underline{x}_{2}-\underline{x}_{1}\right) \\
& =-\underline{x}_{1}+2 \underline{x}_{2} \\
& =(7,-2,5,2,-3) \text { is an ot hiv solution of the system. }
\end{aligned}
$$

Question 3. Determine whether the following statements are true or false for any $n \times n$ matrices A and B. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

1. (3 marks) If A and B are square matrices such that $A B$ can be expressed as a product of elementary matrices, then the system $A \mathbf{x}=\mathbf{b}$ has exactly one solution.

True,
Since $A B$ can be written as a product of elementary matrices then $A B$ is invertible by the equivalence tum.

$$
A B(A B)^{-1}=I
$$

It follows that A is invertible and its inverse is $B(A B)^{-1}$ since A is a square matrix.
and again by the equivalence the. $A x=0$ has only the trivial solution since A is invertible.

