Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S7: Fall 2022: Quiz 8

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (5 marks) Given A, an $n \times n$ matrix such that det(A) = 9 and

$$A^3 A^T = 3A^{-1} \operatorname{adj}(A)$$

find *n*.

Question 2. (3 marks) Using Cramer's Rule find x_1 and x_3 for $A\mathbf{x} = \mathbf{b}$ where $A = \begin{bmatrix} \sin\theta & -\cos\theta & \sin\theta \\ \cos\theta & \sin\theta & \cos\theta \\ 0 & 0 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2\sin\theta \\ 2\cos\theta \\ 2 \end{bmatrix}$.

Question 3. Determine whether the following statements are true or false for any $n \times n$ matrices A and B. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

1. (3 marks) There is no 3×3 matrix for which $A^2 + I_3 = 0$.

Bonus Questions. (5 marks) Show that the following two statements are equivalent:

S1. P, Q, and P + Q are all invertible and $(P + Q)^{-1} = P^{-1} + Q^{-1}$

S2. *P* is invertible and Q = PG where $G^2 + G + I = 0$.