Question 1. (4 marks) Let A, B, C, D, E, and F be the vertices of a regular hexagon ${ }^{1}$, taken in order. Show that $\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F}=3 \overrightarrow{A D}$

Question 2. (3 marks) If $\vec{u}=(0,1,1)$ and $\vec{v}=(p, 4, p)$ then find the parameter p such that the angle between \vec{u} and \vec{v} is $\pi / 3$.
$\underline{\boldsymbol{u}} \cdot \underline{\boldsymbol{v}}=\|\underline{\boldsymbol{u}}\|\|\underline{\underline{v}}\| \cos \theta$

$$
\begin{aligned}
(0,1,1) \cdot(p, 4, p) & =\|(0,1,1) 1111(p, 4, p)\| \cos \frac{\pi}{3} \\
4+p & =\sqrt{2} \sqrt{p^{2}+4^{2}+p^{2}} \frac{1}{2} \\
8+2 p & =\sqrt{2} \sqrt{2 p^{2}+16} \\
(8+2 p)^{2} & =2\left(2 p^{2}+16\right) \\
64+32 p+4 p^{2} & =4 p^{2}+32 \\
32 p & =-32 \\
p & =-1
\end{aligned}
$$

Question 3. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

1. (3 marks) The diagonals of a rhombus ${ }^{2}$ are perpendicular to each other.

$$
\begin{aligned}
(\underline{u}+\underline{v}) \cdot(\underline{u}-\underline{v}) & =\underline{u} \cdot \underline{u}-\underline{u} \cdot \underline{v}+\underline{v} \cdot \underline{u}-\underline{v} \cdot \underline{v} \\
& =\|\underline{u}\|^{2}-\underline{u} \cdot v+\underline{u} \cdot \underline{v}-\|\underline{v}\|^{2} \\
& =\|\underline{u}\|^{2}-\|\underline{v}\|^{2} \\
& =0 \quad \text { since }\|\underline{u}\|
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ An hexagon is a closed geometrical shape with six sides and six angles. If an hexagon has equal sides and equal angles, then it is called a regular hexagon.
 ${ }^{2}$ A parallelogram with all sides of equal length is called a rhombus.

