. .

Question 1. Given the lines $\mathbf{x} = (1,0,1) + t(1,1,-1), t \in \mathbb{R}$ and $\mathbf{x} = (2,3,4) + t(0,-1,2), t \in \mathbb{R}$.

a. (2 marks) Determine whether the lines are perpendicular to each other, parallel or neither. Justify.

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work

b. (3 marks) Find the point of intersection between the lines if it exists.

¢

Questions 2. Given the planes
$$2x - y - z = 5$$
 and $-4x + 2y + 2z = 12$.

a. (1 mark) Determine whether the two planes are perpendicular to each other, parallel or neither. Justify.

b. (5 marks) Using projection(s) find the shortest distance between the two planes.

Questions 3. Given the plane x + y + z = 0 and the line (x, y, z) = (1 + t, 2 + 2t, 3 + 3t) where $t \in \mathbb{R}$.

a. (2 marks) Determine whether the line is perpendicular to the plane, parallel or neither. Justify.

The line and the plane are parallel iff
$$n \perp d$$
.
 $n \cdot d = (1, 1, 1) \cdot (1, 2, 3) = 6 \neq 0$ of not parallel.
The line and the plane are orthogonal iff $\underline{n} \parallel \underline{d}$.
The line and the plane are orthogonal iff $\underline{n} \parallel \underline{d}$.
The line and \underline{d} are not multiples of each other, the line and
the plane are not perpendicular.

`

b. (3 marks) Find the point of intersection between the line and the plane if it exists.

$$(1+t) + (2+2t) + (3+3t) = 0$$

$$6+6t = 0$$

$$t = -1$$

$$(x, y, z) = (1+(-1), 2+2(-1), 3+3(-1)) = (0, 0, 0)$$

$$(x, y, z) = (1+(-1), 2+2(-1), 3+3(-1)) = (0, 0, 0)$$

$$(x, y, z) = (1+(-1), 2+2(-1), 3+3(-1)) = (0, 0, 0)$$

Question Bonus. (2 marks) A former Prime Minister of Canada defined a proof as

I don't know — a proof is a proof. What kind of a proof? It's a proof. A proof is a proof, and when you have a good proof, it's because it's proven.

In your own words correctly define proof.